GGA: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
(187 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{TAGDEF|GGA|91 {{!}} PE {{!}} RP {{!}} PS {{!}} AM| type of exchange-correlation in accordance with the {{FILE|POTCAR}} file}}
{{TAGDEF|GGA|PE {{!}} RP {{!}} PS {{!}} AM {{!}} LIBXC {{!}} ...| exchange-correlation functional in accordance with the {{FILE|POTCAR}} file}}


Description: {{TAG|GGA}} specifies the type of generalized-gradient-approximation one wishes to use.
Description: {{TAG|GGA}} specifies a LDA or GGA exchange-correlation functional.
----
----
This tag was added to perform GGA calculation with pseudopotentials generated with conventional LDA reference configurations.
This tag was added to perform GGA calculations with pseudopotentials generated with conventional LDA reference configurations.
{{NB| important| VASP recalculates the exchange-correlation energy inside the PAW sphere and corrects the atomic energies given by the {{FILE|POTCAR}} file. For this to work, the original LEXCH tag must not be modified in the {{FILE|POTCAR}} file.}}


Possible options are:
A few points should be noted:
*The LIBXC option (or just LI) allows to use a LDA or GGA functional from the library of exchange-correlation functionals Libxc{{cite|marques:cpc:2012}}{{cite|lehtola:sx:2018}}{{cite|libxc}}. Along with {{TAG|GGA}}=LIBXC, it is also necessary to specify the {{TAG|LIBXC1}} and {{TAG|LIBXC2}} tags that specify the particular functional. Note that it is necessary to have [[Makefile.include#Libxc_.28optional.29|Libxc >= 5.2.0 installed]] and VASP.6.3.0 or higher compiled with [[Precompiler_options#-DUSELIBXC|precompiler options]].
*When the OR, BO, MK, ML or CX GGA is used in combination with the nonlocal vdW-DF functional of Dion ''et al.''{{cite|dion:prl:2004}}, the GGA component of the correlation should in principle be turned off with {{TAG|AGGAC}}=0 (see {{TAG|nonlocal vdW-DF functionals}}).
<!--
*The options in the last table allow to select range-separated ACFDT calculations, where a short-range local (DFT-like) exchange and correlation kernel is added to the long-range exchange and RPA correlation energy.
-->


:{|
The possible options for the {{TAG|GGA}} tag are:
<!--
:'''No functional:'''
:{| border="1" cellspacing="0" cellpadding="5"
|-
|CO  || No exchange-correlation
|-
|}
-->
 
:'''LDA functionals:'''
:{| border="1" cellspacing="0" cellpadding="5"
|CA (or PZ)  || Slater exchange{{cite|dirac:mpcps:1930}} + Perdew-Zunger parametrization of Ceperley-Alder Monte-Carlo correlation data{{cite|ceperley1980}}{{cite|perdewzunger1981}}
|-
|VW  || Slater exchange{{cite|dirac:mpcps:1930}} + Vosko-Wilk-Nusair correlation (VWN5){{cite|vosko1980}}
|-
|HL  || Slater exchange{{cite|dirac:mpcps:1930}} + Hedin-Lundqvist correlation{{cite|hedin1971}}
|-
|WI  || Slater exchange{{cite|dirac:mpcps:1930}} + Wigner correlation{{cite|Wigner:tfs:1938}} (Eq. (3.2) in Ref. {{cite|pines:ssp:1955}})
|-
|LIBXC (or LI)  || Any LDA from Libxc{{cite|marques:cpc:2012}}{{cite|lehtola:sx:2018}}{{cite|libxc}} (the {{TAG|LIBXC1}} and {{TAG|LIBXC2}} tags are also required)
|-
|}
 
:'''GGA functionals:'''
:{| border="1" cellspacing="0" cellpadding="5"
<!-- these first three options have been obsolete since VASP.4.X
<!-- these first three options have been obsolete since VASP.4.X
|PB || || Perdew -Becke
|PB || Perdew - Becke
|-
|-
|PW || || Perdew -Wang 86
|PW || Perdew - Wang 86
|-
|-
|LM || || Langreth-Mehl-Hu
|LM || Langreth-Mehl-Hu
|- -->
|- -->
|91 || || Perdew -Wang 91
|LIBXC (or LI)  || Any GGA from Libxc{{cite|marques:cpc:2012}}{{cite|lehtola:sx:2018}}{{cite|libxc}} (the {{TAG|LIBXC1}} and {{TAG|LIBXC2}} tags are also required)
|-
|91 || Perdew-Wang (PW91){{cite|perdew:prb:1991}}
|-
|PE  || Perdew-Burke-Ernzerhof (PBE){{cite|perdew:prl:1996}}
|-
|RE  || Revised PBE from Zhang and Yang (revPBE){{cite|zhang1998}}
|-
|RP  || Revised PBE from Hammer et al. (RPBE){{cite|hammer1999}}
|-
|PS  || Revised PBE for solids (PBEsol){{cite|perdew:prl:08}}
|-
|-
|PE || || Perdew-Burke-Ernzerhof
|AM  || Armiento-Mattson (AM05){{cite|armiento:prb:05}}{{cite|mattson:jcp:08}}{{cite|mattson:prb:09}}
|-
|-
|RP || || revised Perdew-Burke-Ernzerhof
|B3  || B3LYP{{cite|stephens:jpc:1994}} with VWN3{{cite|vosko1980}} for LDA correlation
|-
|-
|AM || || AM05<ref name="armiento:prb:05"/><ref name="mattson:jcp:08"/><ref name="mattson:prb:09"/>
|B5  || B3LYP{{cite|stephens:jpc:1994}} with VWN5{{cite|vosko1980}} for LDA correlation
|-
|-
|HL || || Hendin-Lundqvist<ref name="hedin1971"/>
|BF  || BEEF (requires VASP compiled with [[Precompiler_options#-Dlibbeef|-Dlibbeef]]){{cite|beef2012}}
|-
|-
|CA || || Ceperley-Alder<ref name="hedin1980"/>
|Designed to be combined with {{TAG|nonlocal vdW-DF functionals}}: ||
|-
|-
|PZ || || Ceperley-Alder, parametrization of Perdew-Zunger<ref name="perdewzunger1981"/>
|OR  || optPBE exchange{{cite|klimes:jpcm:2010}} + PBE correlation{{cite|perdew:prl:1996}}
|-
|-
|WI || || Wigner
|BO (with {{TAGBL|PARAM1}}=0.1833333333 and {{TAGBL|PARAM2}}=0.22)  || optB88 exchange{{cite|klimes:jpcm:2010}} + PBE correlation{{cite|perdew:prl:1996}}
|-
|-
|RP || || RPBE with Pade Approximation
|MK  || optB86b exchange{{cite|klimes:prb:2011}} + PBE correlation{{cite|perdew:prl:1996}}
|-
|-
|VW || || Vosko-Wilk-Nusair (VWN)
|ML  || PW86R exchange{{cite|lee:prb:2010}} + PBE correlation{{cite|perdew:prl:1996}}
|-
|-
|B3 || || B3LYP (Joachim Paier), where LDA part is with VWN3-correlation
|CX  || CX (LV-PW86r) exchange{{cite|berland:prb:2015}} + PBE correlation{{cite|perdew:prl:1996}}
|-
|-
|PS || ||Perdew-Burke-Ernzerhof revised for solids (PBEsol)<ref name="perdew:prl:08"/>
|}
|}


The tags AM (AM05) and PS (PBEsol) are only supported by VASP.5.X. The AM05 functional and the PBEsol functional are constructed using different principles, but both aim at a decent description of yellium surface energies. In practice, they yield quite similar results for most materials. Both are available for spin polarized calculations.
<!--
:'''Short-range functionals for range-separated ACFDT-RPA (WARNING: not extensively tested and should be used only after careful inspection of the source code):'''
:{| border="1" cellspacing="0" cellpadding="5"
|-
|RA  || New RPA Perdew-Wang
|-
|PL  || New RPA+ Perdew-Wang
|-
|03  || Range-separated ACFDT (LDA - sr RPA) <math>\mu=0.3~\AA^3</math>
|-
|05  || Range-separated ACFDT (LDA - sr RPA) <math>\mu=0.5~\AA^3</math>
|-
|10  || Range-separated ACFDT (LDA - sr RPA) <math>\mu=1.0~\AA^3</math>
|-
|20  || Range-separated ACFDT (LDA - sr RPA) <math>\mu=2.0~\AA^3</math>
|}
-->
 
== Related tags and articles ==
{{TAG|LIBXC1}},
{{TAG|LIBXC2}},
{{TAG|ALDAX}},
{{TAG|ALDAC}},
{{TAG|AGGAX}},
{{TAG|AGGAC}},
{{TAG|METAGGA}}
 
{{sc|GGA|Examples|Examples that use this tag}}


== References ==
== References ==
<references>
<references/>
<ref name="armiento:prb:05">[http://link.aps.org/doi/10.1103/PhysRevB.72.085108 R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).]</ref>
 
<ref name="mattson:jcp:08">[http://dx.doi.org/10.1063/1.2835596 A. E. Mattsson, R. Armiento, J. Paier, G. Kresse, J.M. Wills, and T.R. Mattsson, J. Chem. Phys. 128, 084714 (2008).]</ref>
<ref name="mattson:prb:09">[http://link.aps.org/doi/10.1103/PhysRevB.79.155101 A. E. Mattsson and R. Armiento, Phys. Rev. B 79, 155101 (2009).]</ref>
<ref name="hedin1971">[http://link.aps.org/doi/10.1103/PhysRevB.79.155101 L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).]</ref>
<ref name="ceperley1980">[http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.45.566 D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).]</ref>
<ref name="perdewzunger1981">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.23.5048 J. P. Perdew and Alex Zunger, Phys. Rev. B 23, 5048 (1981).]</ref>
<ref name="perdew:prl:08">[http://link.aps.org/doi/10.1103/PhysRevB.79.155107 J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).]</ref>
</references>
----
----
[[The_VASP_Manual|Contents]]


[[Category:INCAR]]
[[Category:INCAR tag]][[Category:Exchange-correlation functionals]][[Category:GGA]]

Revision as of 14:19, 7 March 2023

GGA = PE | RP | PS | AM | LIBXC | ...
Default: GGA = exchange-correlation functional in accordance with the POTCAR file 

Description: GGA specifies a LDA or GGA exchange-correlation functional.


This tag was added to perform GGA calculations with pseudopotentials generated with conventional LDA reference configurations.

Important: VASP recalculates the exchange-correlation energy inside the PAW sphere and corrects the atomic energies given by the POTCAR file. For this to work, the original LEXCH tag must not be modified in the POTCAR file.

A few points should be noted:

  • The LIBXC option (or just LI) allows to use a LDA or GGA functional from the library of exchange-correlation functionals Libxc[1][2][3]. Along with GGA=LIBXC, it is also necessary to specify the LIBXC1 and LIBXC2 tags that specify the particular functional. Note that it is necessary to have Libxc >= 5.2.0 installed and VASP.6.3.0 or higher compiled with precompiler options.
  • When the OR, BO, MK, ML or CX GGA is used in combination with the nonlocal vdW-DF functional of Dion et al.[4], the GGA component of the correlation should in principle be turned off with AGGAC=0 (see nonlocal vdW-DF functionals).

The possible options for the GGA tag are:

LDA functionals:
CA (or PZ) Slater exchange[5] + Perdew-Zunger parametrization of Ceperley-Alder Monte-Carlo correlation data[6][7]
VW Slater exchange[5] + Vosko-Wilk-Nusair correlation (VWN5)[8]
HL Slater exchange[5] + Hedin-Lundqvist correlation[9]
WI Slater exchange[5] + Wigner correlation[10] (Eq. (3.2) in Ref. [11])
LIBXC (or LI) Any LDA from Libxc[1][2][3] (the LIBXC1 and LIBXC2 tags are also required)
GGA functionals:
LIBXC (or LI) Any GGA from Libxc[1][2][3] (the LIBXC1 and LIBXC2 tags are also required)
91 Perdew-Wang (PW91)[12]
PE Perdew-Burke-Ernzerhof (PBE)[13]
RE Revised PBE from Zhang and Yang (revPBE)[14]
RP Revised PBE from Hammer et al. (RPBE)[15]
PS Revised PBE for solids (PBEsol)
AM Armiento-Mattson (AM05)[16][17][18]
B3 B3LYP[19] with VWN3[8] for LDA correlation
B5 B3LYP[19] with VWN5[8] for LDA correlation
BF BEEF (requires VASP compiled with -Dlibbeef)[20]
Designed to be combined with nonlocal vdW-DF functionals:
OR optPBE exchange[21] + PBE correlation[13]
BO (with PARAM1=0.1833333333 and PARAM2=0.22) optB88 exchange[21] + PBE correlation[13]
MK optB86b exchange[22] + PBE correlation[13]
ML PW86R exchange[23] + PBE correlation[13]
CX CX (LV-PW86r) exchange + PBE correlation[13]


Related tags and articles

LIBXC1, LIBXC2, ALDAX, ALDAC, AGGAX, AGGAC, METAGGA

Examples that use this tag

References

  1. a b c M. A. L. Marques, M. J. T. Oliveira, and T. Burnus, Comput. Phys. Commun., 183, 2272 (2012).
  2. a b c S. Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, SoftwareX, 7, 1 (2018).
  3. a b c https://libxc.gitlab.io
  4. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
  5. a b c d P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930).
  6. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
  7. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
  8. a b c S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
  9. L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
  10. E. Wigner, Trans. Faraday Soc. 34, 678 (1938).
  11. D. Pines, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1955), Vol. I, p. 367.
  12. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
  13. a b c d e f J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
  14. Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
  15. B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
  16. R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).
  17. A. E. Mattsson, R. Armiento, J. Paier, G. Kresse, J. M. Wills, and T. R. Mattsson, J. Chem. Phys. 128, 084714 (2008).
  18. A. E. Mattsson and R. Armiento, Phys. Rev. B 79, 155101 (2009).
  19. a b P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
  20. J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, Jens K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012).
  21. a b J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
  22. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
  23. K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010).