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Experiment: Static and frequency dependent dielectric response functions:
measurement of absorption, reflectance, and energy loss spectra. (Optical
properties of semiconductors and metals.)

The long-wavelength limit of the frequency dependent microscopic
polarizability and dielectric matrices determine the optical properties in
the regime accessible to optical and electronic probes.

Theory: Frequency dependent polarizability matrix needed in many post-DFT
schemes, e.g.:

GW
) frequency dependent microscopic dielectric response
) frequency dependent macroscopic dielectric tensor required for the

analytical integration of the Coulomb singularity in the self-energy.

exact-exchange optimized-effective-potential method (EXX-OEP)

Bethe-Salpeter-Equation (BSE)
) dielectric screening of the interaction potential needed to properly
include excitonic effects
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Frequency dependent

frequency dependent microscopic dielectric matrix
) In the RPA, and including changes in the DFT xc-potential.

frequency dependent macroscopic dielectric matrix
) Imaginary and real part of the dielectric function.
) In the RPA, and including changes in the DFT xc-potential.
) In- or excluding local field effects

Static

Static dielectric tensor, Born effective charges, and Piezo-electric tensor,
in- or exluding local field effects
) From density-functional-perturbation-theory (DFPT)
(local field effects in RPA and DFT xc-potential.)

) From the self-consistent response to a finite electric field (PEAD)
(local field effects from changes in a HF/DFT hybrid xc-potential.)
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Macroscopic continuum consideration

The macroscopic dielectric tensor couples the electric field in a material
to an applied external electric field:

E = ǫ−1Eext, where ǫ is 3 × 3 tensor

For a longitudinal field, i.e., a field caused by stationary external charges
this can be reformulated as (in momentum space, in the long-wavelength
limit):

vtot = ǫ−1vext, with vtot = vext + vind

The induced potential is generated by the induced change in the charge
density ρind. In the linear response regime (weak external fields):

ρind = χvext, where χ is the reducible polarizability

ρind = Pvtot, where P is the irreducible polarizability

It may be straightforwardly shown that:

ǫ−1 = 1 + νχ, ǫ = 1 − νP , and χ = P + Pνχ (a Dyson eq.)

where ν = 4πe3/q2 is the Coulomb kernel in momentum space.
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Macroscopic and microscopic quantities

The macroscopic dielectric function can be formally written as

E(r, ω) =

Z

dr′ǫ−1
mac(r − r

′, ω)Eext(r
′, ω)

or in momentum space

E(q, ω) = ǫ−1
mac(q, ω)Eext(q, ω)

The microscopic dielectric function enters as

e(r, ω) =

Z

dr′ǫ−1(r, r′, ω)Eext(r
′, ω)

and in momemtum space

e(q + G, ω) =
X

G′

ǫ−1
G,G′(q, ω)Eext(q + G

′, ω)

The microscopic dielectric functions is accessible through ab-initio calculations.
Macroscopic and microscopic quantities are linked through:

E(R, ω) =
1

Ω

Z

Ω(R)

e(r, ω)dr
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Macroscopic and microscopic quantities (cont.)

Assuming the external field varies on a length scale that is much larger
than the atomic distances one may show that

E(q, ω) = ǫ−1
0,0(q, ω)Eext(q, ω)

and

ǫ−1
mac(q, ω) = ǫ−1

0,0(q, ω)

ǫmac(q, ω) =
(

ǫ−1
0,0(q, ω)

)−1

For materials that are homogeneous on the microscopic scale the
off-diagonal elements of ǫ−1

G,G′(q, ω) (i.e., for G 6= G′) are zero, and

ǫmac(q, ω) = ǫ0,0(q, ω)

This is called the “neglect of local field effects”
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The longitudinal microscopic dielectric function

The microscopic (symmetric) dielectric function that links the longitudinal
component of an external field (i.e. the part polarized along the propagation
wave vector q) to the longitudinal component of the total electric field, is given
by:

ǫ−1
G,G′(q, ω) := δG,G′ +

4πe2

|q + G||q + G′|

∂ρind(q + G, ω)

∂vext(q + G′, ω)

ǫG,G′(q, ω) := δG,G′ −
4πe2

|q + G||q + G′|

∂ρind(q + G, ω)

∂vtot(q + G′, ω)

and with

χG,G′(q, ω) := ∂ρind(q+G,ω)
∂vext(q+G′,ω)

PG,G′(q, ω) := ∂ρind(q+G,ω)
∂vtot(q+G′,ω)

νs
G,G′(q) := 4πe2

|q+G||q+G′|

one obtains the Dyson equation linking P and χ

χG,G′(q, ω) = PG,G′(q, ω) +
X

G1,G2

PG,G1
(q, ω)νs

G1,G2
(q)χG2,G′(q, ω)
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Approximations

Problem: We know neither χ nor P .

Solution: The quantity we can easily access in Kohn-Sham DFT is the:

“irreducible polarizability in the independent particle picture” χ0 (or χKS)

χ0
G,G′(q, ω) :=

∂ρind(q + G, ω)

∂veff(q + G′, ω)

Adler and Wiser derived expressions for χ0 which, in terms of Bloch
functions, can be written as

χ0
G,G′(q, ω) =

1

Ω

∑

nn′k

2wk(fn′k+q − fn′k)

×
〈ψn′k+q|e

i(q+G)r|ψnk〉〈ψnk|e
−i(q+G′)r′ |ψn′k+q〉

ǫn′k+q − ǫnk − ω − iη
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Approximations cont.

For the Kohn-Sham system, the following relations can shown to hold

χ = χ0 + χ0(ν + fxc)χ

P = χ0 + χ0fxcP

χ = P + Pνχ

where ν is the Coulomb kernel and fxc = ∂vxc/∂ρ |ρ=ρ0
is the DFT xc-kernel.

ǫ−1 = 1 + νχ ǫ = 1 − νP

Random-Phase-Approximation (RPA): P = χ0

ǫG,G′(q, ω) := δG,G′ −
4πe2

|q + G||q + G′|
χ0

G,G′(q, ω)

Including changes in the DFT xc-potential: P = χ0 + χ0fxcP
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Calculation of optical properties

The long-wavelength limit (q → 0) of the dielectric matrix determines the
optical properties in the regime accessible to optical probes.

The macroscopic dielectric tensor ǫ∞(ω)

1

q̂ · ǫ∞(ω) · q̂
= lim

q→0
ǫ−1
0,0(q, ω)

can be obtained at various levels of approximation:

LOPTICS = .TRUE.
) ǫ0,0(q, ω) in the RPA
) neglect of local field effects: q̂ · ǫ∞(ω) · q̂ ≈ limq→0 ǫ0,0(q, ω)

ALGO = CHI
) Including local field effects: in RPA and due to changes in the DFT

xc-potential (LRPA = .TRUE. | .FALSE.).
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Calculation of optical properties (cont.)

LOPTICS = .TRUE.

q̂ · ǫ∞(ω) · q̂ ≈ lim
q→0

ǫ0,0(q, ω)

The imaginary part of ǫ∞(ω) (3 × 3 tensor) of which is given by

ǫ
(2)
αβ(ω) =

4πe2

Ω
lim
q→0

1

q2

X

v,c,k

2wkδ(ǫck − ǫvk − ω)

× 〈uck+qeα |uvk〉〈uvk|uck+qeβ
〉

and the real part is obtained by a Kramers-Kronig transformation

ǫ
(1)
αβ(ω) = 1 +

2

π

Z ∞

0

ǫ
(2)
αβ(ω′)ω′

ω′2 − ω2
dω′

The difficulty lies in the computation of the quantities

|unk+qeα〉

the first order change in the cell periodic part of |ψnk〉 with respect to the

Bloch vector k.
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Expanding up to first order in q

|unk+q〉 = |unk〉 + q · |∇kunk〉 + ...

and using perturbation theory to write

|∇kunk〉 =
∑

n6=n′

|un′k〉〈un′k|
∂[H(k)−ǫnkS(k)]

∂k
|unk〉

ǫnk − ǫn′k

where H(k) and S(k) are the Hamiltonian and overlap operator for the

cell-periodic part of the wave functions.
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Examples

GAJDOŠ et al. PHYSICAL REVIEW B 73, 045112 s2006d
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The GW potentials: ∗ GW POTCARs

FIG. 2. Atomic scattering properties of the Si TM sleftd and
PAW srightd potentials used in the present work for QP calculations
sTables I and IId. Shown are the logarithmic derivatives of the radial
wave functions for different angular momenta for a spherical Si
atom, evaluated at a distance of r=1.3 Å from the nucleus. Solid
lines correspond to the all-electron full-potential, and dotted lines to
the TM pseudopotential or PAW potential. The energy zero corre-
sponds to the vacuum level. Circles indicate linearization energies
for projectors.
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The static dielectric response

The following quantities:

The ion-clamped static macroscopic dielectric tensor ǫ∞(ω = 0)
(or simply ǫ∞).

Born effective charge tensors Z∗:

Z∗
ij =

Ω

e

∂Pi

∂uj

=
1

e

∂Fi

∂Ej

Electronic contribution to piezo-electric tensors:

e
(0)
ij = −

∂σi

∂Ej

, i = xx, yy, zz, xy, yz, zx

may be calculated using density functional perturbation theory (DFPT):
LEPSILON=.TRUE.
or from the SC response of the wave functions to a finite electric field (PEAD):

LCALCEPS=.TRUE. (only for insulating systems!)

(Useful in case one works with hybrid functionals, where LEPSILON = .TRUE. does not work.)
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Response to electric fields from DFPT

LEPSILON=.TRUE.
Instead of using perturbation theory to compute |∇kunk〉, one can solve the
linear Sternheimer equation:

[H(k) − ǫnkS(k)] |∇kunk〉 = −
∂ [H(k) − ǫnkS(k)]

∂k
|unk〉

for |∇kunk〉.

The linear response of the wave functions to an externally applied electric field,
|ξnk〉, can be found solving

[H(k) − ǫnkS(k)] |ξnk〉 = −∆HSCF(k)|unk〉 − q̂ · |∇kunk〉

where ∆HSCF(k) is the microscopic cell periodic change in the Hamiltonian,

due to changes in the wave functions, i.e., local field effects(!): these may be

included at the RPA level only (LRPA=.TRUE.) or may include changes in the

DFT xc-potential as well.
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Response to electric fields from DFPT (cont.)

The static macroscopic dielectric matrix is then given by

q̂ · ǫ∞ · q̂ = 1 −
8πe2

Ω

X

vk

2wk〈q̂ · ∇kunk|ξnk〉

where the sum over v runs over occupied states only.

The Born effective charges and piezo-electric tensor may be conveniently
computed from the change in the Hellmann-Feynman forces and the
mechanical stress tensor, due to a change in the wave functions in a finite
difference manner:

|u
(1)
nk〉 = |unk〉 + ∆s|ξnk〉
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Examples

TABLE III. The ion clamped static macroscopic dielectric constants «
`

calculated using the PAW method

and various approximations. «mic reports values neglecting local field effects, «RPA includes local field effects

in the Hartree approximation, and «DFT includes local field effects on the DFT level. «
cond are values obtained

by summation over conduction band states, whereas «
LR are values obtained using linear response theory

sdensity functional perturbation theoryd.

Method C Si SiC AlP GaAs GadAs

Longitudinal

«mic
LR 5.98 14.08 7.29 9.12 14.77 15.18

«mic
cond 5.98 14.04 7.29 9.10 14.75 15.16

«RPA
LR 5.54 12.66 6.66 7.88 13.31 13.77

«RPA
cond 5.55 12.68 6.66 7.88 13.28 13.73

«DFT
LR 5.80 13.29 6.97 8.33 13.98 14.42

«DFT
cond 5.82 13.31 6.97 8.33 13.98 14.37

Transversal

«mic
cond 5.68 16.50 8.00 10.63 14.72 15.33

«mic
cond incl. d projectors 5.99 14.09 7.28 9.11

«mic
cond APW+LO 13.99 15.36

Experiment sRef. 33d 5.70 11.90 6.52 7.54 11.10

Hummer et al., Phys. Rev. B 73, 045112 (2006).
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Self-consistent response to finite electric fields (PEAD)†

Add the interaction with a small but finite electric field E to the expression for
the total energy

E[{ψ(E)}, E ] = E0[{ψ
(E)}] − ΩE · P[{ψ(E)}]

where P[{ψ(E)}] is the macroscopic polarization as defined in the “modern
theory of polarization”‡

P[{ψ(E)}] = −
2ie

(2π)3

X

n

Z

BZ

dk〈u
(E)
nk |∇k|u

(E)
nk 〉

Adding a corresponding term to the Hamiltonian

H|ψ
(E)
nk 〉 = H0|ψ

(E)
nk 〉 − ΩE ·

δP[{ψ(E)}]

δ〈ψ
(E)
nk |

allows one to solve for {ψ(E)} by means of a direct optimization method
(iterate until self-consistency).
†
R. W. Nunes and X. Gonze, Phys. Rev. B 63, 155107 (2001).

‡
R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
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PEAD cont.

Once the self-consistent solution {ψ(E)} has been obtained:

the static macroscopic dielectric matrix is given by

(ǫ∞)ij =
(P[{ψ(E)}] − P[{ψ(0)}])i

Ej

and the Born effective charges and ion-clamped piezo-electric tensor may
again be conveniently computed from the change in the
Hellmann-Feynman forces and the mechanical stress tensor.

The PEAD method is able to include local field effects in a natural manner (the
self-consistency).

INCAR tags

LCALCPOL = .TRUE. Compute macroscopic polarization.

LCALCEPS = .TRUE. Compute static macroscopic dielectric-, Born effect charge-, and ion-clamped piezo-electric
tensors, both with as well as without local field effects.

EFIELD PEAD = E x E y E z Electric field used by PEAD routines.
(Default if LCALCEPS=.TRUE.: EFIELD PEAD = 0.01 0.01 0.01 [eV/Å]).

LRPA=.FALSE. Skip the calculations without local field effects (Default).

SKIP SCF=.TRUE. Skip the calculations with local field effects.
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Example: ion-clamped ǫ∞ using the HSE hybrid

TABLE I. Ion clamped shigh frequencyd macroscopic dielectric
constants e` from TD-DFT using the LDA and the HSE
sm=0.3 Å−1d hybrid functional in the independent-particle approxi-
mation seIP

` d and including all electron-electron interactions. The
HSE results have been obtained either by solving the Dyson equa-
tion or by applying a finite field and extracting the response from
the change in the polarization sRefs. 30 and 31d. For ZnO the di-
electric constants are reported for the wurtzite structure along the a

and c axes. All data are calculated at the experimental volumes.

LDA HSE HSE fin. field

Expt.eIP
`

e` eIP
`

e` eIP
`

e`

Si 14.1 13.35 10.94 11.31 10.87 11.37 11.9a

GaAs 14.81 13.98 10.64 10.95 10.54 11.02 11.1a

AlP 9.12 8.30 7.27 7.35 7.32 7.35 7.54a

SiC 7.29 6.96 6.17 6.43 6.15 6.44 6.52a

C 5.94 5.80 5.21 5.56 5.25 5.59 5.7a

ZnO c 5.31 5.15 3.50 3.71 3.57 3.77 3.78b

ZnO a 5.28 5.11 3.48 3.67 3.54 3.72 3.70b

LiF 2.06 2.02 1.85 1.90 1.86 1.91 1.9c
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Why go beyond DFT and HF-DFT hybrid functionals?
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Figure 8. Band gaps from PBE, PBE0, and HSE03 calculations,

plotted against data from experiment.
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One-electron energies

DFT
„

−
1

2
∆ + Vext(r) + VH(r) + Vxc(r)

«

ψnk(r) = ǫnkψnk(r)

HF-DFT hybrid functionals
„

−
1

2
∆ + Vext(r) + VH(r)

«

ψnk(r)+

Z

VX(r, r′)ψnk(r′)dr′ = ǫnkψnk(r)

Quasiparticle equations
„

−
1

2
∆ + Vext(r) + VH(r)

«

ψnk(r)+

Z

Σ(r, r′, Enk)ψnk(r′)dr′ = Enkψnk(r)
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The GW approximation to Σ [L. Hedin, Phys. Rev. 139, A796 (1965)]

In the GW approximation the self-energy is given by

Σ = iGW

Where G is the Green’s function

G(r, r′, ω) =
X

n

ψn(r)ψ∗
n(r′)

ω − ǫn + iη sgn(ǫn − µ)

and W is the screened Coulomb kernel W = ǫ−1ν

WG,G′(q, ω) =
4πe2

|q + G||q + G′|
ǫ−1
G,G′(q, ω)

In reciprocal space 〈ψnk|Σ(ω)|ψnk〉 is given by

〈ψnk|Σ(ω)|ψnk〉 =
i

2πΩ

X

q

X

GG′

X

n′

Z ∞

−∞

dω′WG,G′(q, ω′)×

×
〈ψnk|e

i(q+G)r|ψn′k−q〉〈ψn′k−q|e
−i(q+G)r|ψnk〉

ω − ω′ − ǫn′k−q + iη sgn(ǫn − µ)
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GW Quasiparticle equations

The GW quasiparticle equation
„

−
1

2
∆ + Vext(r) + VH(r)

«

ψnk(r) +

Z

Σ(r, r′, Enk)ψnk(r′)dr′ = Enkψnk(r)

The quasiparticle energies are given by

Enk = ℜ

»

〈ψnk| −
1

2
∆ + Vext + VH + Σ(Enk)|ψnk〉

–

which may be solved by iteration

EN+1
nk = ℜ

»

〈ψnk| −
1

2
∆ + Vext + VH + Σ(EN

nk)|ψnk〉

–

+ (EN+1
nk − EN

nk)ℜ

»

〈ψnk|
∂Σ(ω)

∂ω

˛

˛

˛

ω=EN
nk

|ψnk〉

–

= EN
nk + ZN

nkℜ

»

〈ψnk| −
1

2
∆ + Vext + VH + Σ(EN

nk)|ψnk〉 − EN
nk

–

where

ZN
nk =

„

1 − 〈ψnk|
∂Σ(ω)

∂ω

˛

˛

˛

ω=EN
nk

|ψnk〉

«−1
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G0W0 and GW0

Single shot GW: G0W0

Enk = ǫnk + Znkℜ

»

〈ψnk| −
1

2
∆ + Vext + VH + Σ(ǫnk)|ψnk〉 − ǫnk

–

and

Znk =

„

1 − 〈ψnk|
∂Σ(ω)

∂ω

˛

˛

˛

ω=ǫnk

|ψnk〉

«−1

Recipe for G0W0 calculations.

Partially self-consistent GW: GW0

Iteration of the quasiparticle energies in G only

GN (r, r′, ω) =
X

n

ψn(r)ψ∗
n(r′)

ω − EN
n + iη sgn(ǫn − µ)

Recipe for GW0 calculations.
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G0W0(PBE) and GW0 quasiparticle gaps

1 2 4 8 16
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G0W0: MARE=8.5% and GW0: MARE=4.5%
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G0W0(PBE) and GW0 quasiparticle gaps cont.

TABLE I. Results of DFT-PBE and quasiparticle sG0W0, GW0, and GWd calculations. An 83838

k-point mesh is used for all calculations except for the GW case ssee textd. Experimental values for gaps

sExpt.d, lattice constants sad, and the calculated values for spin-orbit coupling sSOd are also provided.

Underlined values correspond to zero-temperature values. The mean absolute relative error sMAREd and the

mean relative error sMREd are also reported; lead chalcogenides are excluded in the MARE and MRE.

PBE G0W0 GW0 GW Expt. a SO

PbSe −0.17 0.10 0.15 0.19 0.15a 6.098b 0.40

PbTe −0.05 0.20 0.24 0.26 0.19c 6.428b 0.73

PbS −0.06 0.28 0.35 0.39 0.29d 5.909b 0.36

Si 0.62 1.12 1.20 1.28 1.17e 5.430f

GaAs 0.49 1.30 1.42 1.52 1.52e 5.648f 0.10

SiC 1.35 2.27 2.43 2.64 2.40g 4.350g

CdS 1.14 2.06 2.26 2.55 2.42h 5.832h 0.02

AlP 1.57 2.44 2.59 2.77 2.45h 5.451h

GaN 1.62 2.80 3.00 3.32 3.20i 4.520i 0.00

ZnO 0.67 2.12 2.54 3.20 3.44e 4.580h 0.01

ZnS 2.07 3.29 3.54 3.86 3.91e 5.420h 0.02

C 4.12 5.50 5.68 5.99 5.48g 3.567g

BN 4.45 6.10 6.35 6.73 6.1–6.4j 3.615h

MgO 4.76 7.25 7.72 8.47 7.83k 4.213l

LiF 9.20 13.27 13.96 15.10 14.20m 4.010n

Ar 8.69 13.28 13.87 14.65 14.20o 5.260p

Ne 11.61 19.59 20.45 21.44 21.70o 4.430p

MARE 45% 9.9% 5.7% 6.1%

MRE 45% −9.8% −3.6% 4.7%
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An analogy between GW and hybrid functionals
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Spectral representation of the polarizability

It is cheaper to calculate the polarizability in its spectral representation

χS
G,G′(q, ω′) =

1

Ω

X

nn′k

2wk sgn(ω′)δ(ω′ + ǫnk − ǫn′k−q)(fnk − fn′k−q)×

×〈ψnk|e
i(q+G)r|ψn′k−q〉〈ψn′k−q|e

−i(q+G)r|ψnk〉

which is related to the imaginary part of χ0 through

χS
G,G′(q, ω′) =

1

π
ℑ

ˆ

χ0
G,G′(q, ω)

˜

The polarizability χ0 is then obtained from its spectral representation through
the following Hilbert transform

χ0
G,G′(q, ω) =

Z ∞

0

dω′χS
G,G′(q, ω′) ×

„

1

ω − ω′ − iη
−

1

ω + ω′ + iη

«

LSPECTRAL=.TRUE. NOMEGA = [integer]
(Default for ALGO = CHI | GW0 | GW | scGW | scGW0, when NOMEGA > 2).
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Intro Frequency Static GW

Links and literature

Manual sections

Optical properties and DFPT

Frequency dependent GW calculations

Some literature

“Linear optical properties in the projector-augmented wave methodology”, M. Gajdoš, K. Hummer, and G. Kresse,
Phys. Rev. B 73, 045112 (2006).

“Implementation and performance of the frequency-dependent GW method within the PAW framework”,
M. Shishkin and G. Kresse, Phys. Rev. B 74, 035101 (2006).

“Self-consistent GW calculations for semiconductors and insulators”, M. Shishkin and G. Kresse, Phys. Rev. B 75,
235102 (2007).

“Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections”, M. Shishkin,
M. Marsman, and G. Kresse, Phys. rev. Lett. 99, 246403 (2007).

Some nice derivations of equations in this presentation may be found in: Chapter 2 and Chapter 4 of the Ph.D
thesis of Judith Harl.
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http://cms.mpi.univie.ac.at/mmars/ThesisJudithHarlChapter2.pdf
http://cms.mpi.univie.ac.at/mmars/ThesisJudithHarlChapter4.pdf
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