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@ Diclectric response

e Frequency dependent dielectric properties

© The static dielectric response

@ The GW approximation
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Experiment: Static and frequency dependent dielectric response functions:
measurement of absorption, reflectance, and energy loss spectra. (Optical
properties of semiconductors and metals.)

@ The long-wavelength limit of the frequency dependent microscopic

polarizability and dielectric matrices determine the optical properties in
the regime accessible to optical and electronic probes.

Theory: Frequency dependent polarizability matrix needed in many post-DFT
schemes, e.g.:
o GW
) frequency dependent microscopic dielectric response
) frequency dependent macroscopic dielectric tensor required for the
analytical integration of the Coulomb singularity in the self-energy.

@ exact-exchange optimized-effective-potential method (EXX-OEP)

@ Bethe-Salpeter-Equation (BSE)
) dielectric screening of the interaction potential needed to properly
include excitonic effects
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Frequency dependent

@ frequency dependent microscopic dielectric matrix
) In the RPA, and including changes in the DFT xc-potential.

@ frequency dependent macroscopic dielectric matrix

) Imaginary and real part of the dielectric function.

) In the RPA, and including changes in the DFT xc-potential.
) In- or excluding local field effects

Static

@ Static dielectric tensor, Born effective charges, and Piezo-electric tensor,
in- or exluding local field effects
) From density-functional-perturbation-theory (DFPT)
(local field effects in RPA and DFT xc-potential.)
) From the self-consistent response to a finite electric field (PEAD)
(local field effects from changes in a HF/DFT hybrid xc-potential.)
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Macroscopic continuum consideration

@ The macroscopic dielectric tensor couples the electric field in a material
to an applied external electric field:

E =¢ 'Eox, where € is 3 x 3 tensor

@ For a longitudinal field, i.e., a field caused by stationary external charges
this can be reformulated as (in momentum space, in the long-wavelength
limit):

Vtot = € Vext, With Viot = Vext + Vind

@ The induced potential is generated by the induced change in the charge

density pina. In the linear response regime (weak external fields):

Pind = XVext, where x is the reducible polarizability
Pind = Ptot, where P is the irreducible polarizability

@ It may be straightforwardly shown that:
et=1+wvy e=1—vP, and x = P+ Pvy (a Dyson eq.)

where v = 47e®/q* is the Coulomb kernel in momentum space.
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Macroscopic and microscopic quantities

The macroscopic dielectric function can be formally written as

E(r,w) = /dr'e;];c(r — 1, W) Bext (r', w)
or in momentum space
E(q,w) = €mac(q, ) Eext(q, )
The microscopic dielectric function enters as
e(r,w) = /dr'efl(r,r',w)Eext(r',w)
and in momemtum space

q+G w ZEGG’ q7 ext(q+G,7w)

The microscopic dielectric functions is accessible through ab-initio calculations.
Macroscopic and microscopic quantities are linked through:
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Macroscopic and microscopic quantities (cont.)

Assuming the external field varies on a length scale that is much larger
than the atomic distances one may show that

E(q7 UJ) = €O_,(l)(qa w)Eext (q7 w)
and

6;1;0 (q’ UJ) = 6(7,(1)((L w)
_ -1
6rrlac((17(*‘)) = (60,(1J(q7w))

For materials that are homogeneous on the microscopic scale the
off-diagonal elements of eé}G,(q,w) (i.e., for G # G’) are zero, and

€mac (q7 LU) = 6O,O(Cla UJ)

This is called the “neglect of local field effects”
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The longitudinal microscopic dielectric function

The microscopic (symmetric) dielectric function that links the longitudinal
component of an external field (i.e. the part polarized along the propagation
wave vector q) to the longitudinal component of the total electric field, is given

by:
_ 4me? Opina(q + G,w)
1 Pind (4 ,
’ = 5 ’
€q,c(q,w) a,.a + T Gllat G| dvem(a+ G w)
4me? Opina(q + G,w)
/ w) = (5 ’r — 2
ce.e (@) =066~ [ TG q ¥ O] Dvior(q + Gr)
and with
._ 9pina(a+G.w . Opina(at+tGw s L me?
Xa.a(aw) = gy Poar(a,w) = gailisrsy vge(a) = grdfaren

one obtains the Dyson equation linking P and x

Xee(qw)=Pea(qw) + Y Paoec (4w, c(@xa..c(qw)
G1,G2
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Approximations

Problem: We know neither x nor P.
Solution: The quantity we can easily access in Kohn-Sham DFT is the:
“irreducible polarizability in the independent particle picture” x° (or x¥%)

~ Opina(q+ G,w)

0 )
Xa.a(@w) = et (q + G/, w)

Adler and Wiser derived expressions for x® which, in terms of Bloch
functions, can be written as

1
XOG,G’ (Q7w) = 5 Zka(fn’k+q - fn’k)

nn'k

x (Ynrierql €T G ) (| e 1O EI |ah ey )

€n'k+q — Enk — W — 1N
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Approximations cont.

For the Kohn-Sham system, the following relations can shown to hold
X =x"+ X (v + fre)x
P = XO + Xofxcp
x = P+ Pvyx
where v is the Coulomb kernel and fxc = Ovgc/0p |p=p, is the DFT xc-kernel
et=14+vy e=1—-vP
Random-Phase-Approximation (RPA): P = x°

47re? 0
6G,G/(CL W) = 5G,G’ - WXG,G’ (Cla W)

Including changes in the DFT xc-potential: P = x° + x° foc P
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Calculation of optical properties

The long-wavelength limit (q — 0) of the dielectric matrix determines the
optical properties in the regime accessible to optical probes.

The macroscopic dielectric tensor €o(w)

. lim 5 4(a, )
——— = lim ¢ w
q- eoo(w) ) a—0 0,0 q,

can be obtained at various levels of approximation:
@ LOPTICS = .TRUE.

) €0,0(q,w) in the RPA
) neglect of local field effects: - €oo(w) - § & limg—0 €0,0(q, w)

@ ALGO = CHI
) Including local field effects: in RPA and due to changes in the DFT
xc-potential (LRPA = .TRUE. | .FALSE.).
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Calculation of optical properties (cont.)

LOPTICS = .TRUE.
q - €o(w) - q = lim €p,0(q,w)
q—0

The imaginary part of e (w) (3 X 3 tensor) of which is given by

lim — ZZwké €ck — Evk — W)
v,c,k

(@ ’
aﬁ( ) Q
X <uck+qea |uvk> <uvk|uck+qe5>
and the real part is obtained by a Kramers-Kronig transformation
oo ()¢ 1yt
MW, N 2 €W’
eaﬁ(w)—l—i—;/() T dw
The difficulty lies in the computation of the quantities
|Unictgeq )

the first order change in the cell periodic part of |1),k) with respect to the

Bloch vector k.
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Expanding up to first order in q

[Unk+q) = [Unk) + 4 [Vitnk) + ...

and using perturbation theory to write

Unp'
[ Viunk) = Z o

n#n’

Y (k] a[H(k)glinkS(k)] [t}

€nk — €n’k

where H (k) and S(k) are the Hamiltonian and overlap operator for the
cell-periodic part of the wave functions.
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Examples

GAJDOS et al. PHYSICAL REVIEW B 73, 045112 (2006)
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The GW potentials: *_GW POTCARs
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FIG. 2. Atomic scattering properties of the Si TM (left) and
PAW (right) potentials used in the present work for QP calculations
(Tables I and II). Shown are the logarithmic derivatives of the radial
wave functions for different angular momenta for a spherical Si
atom, evaluated at a distance of r=1.3 A from the nucleus. Solid
lines correspond to the all-electron full-potential, and dotted lines to
the TM pseudopotential or PAW potential. The energy zero corre-
sponds to the vacuum level. Circles indicate linearization energies
for projectors.
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The static dielectric response

The following quantities:
@ The ion-clamped static macroscopic dielectric tensor € (w = 0)
(or simply €so).
@ Born effective charge tensors Z*:
« _QOP, 10F
Y7 e du;  eOFE;

@ Electronic contribution to piezo-electric tensors:

RO
g OF;’

7: = 1733, yy7 ZZ7 xy7 yZ7 2T

may be calculated using density functional perturbation theory (DFPT):
LEPSILON=.TRUE.

or from the SC response of the wave functions to a finite electric field (PEAD):
LCALCEPS=.TRUE. (only for insulating systems!)

(Useful in case one works with hybrid functionals, where LEPSILON = .TRUE. does not work.)
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Response to electric fields from DFPT

LEPSILON=.TRUE.
Instead of using perturbation theory to compute |Viku,x), one can solve the
linear Sternheimer equation:

9 [H (k) — enicS (k)]
ok

[H (k) — €S (k)] [Vitnk) = — |tnic)

for |Victnk).
The linear response of the wave functions to an externally applied electric field,
|€2x), can be found solving

[H (k) — encS(K)] [§nk) = —AHscr (k) |unk) — 4 - [Viunk)

where AHgcr (k) is the microscopic cell periodic change in the Hamiltonian,
due to changes in the wave functions, i.e., local field effects(!): these may be
included at the RPA level only (LRPA=.TRUE.) or may include changes in the
DFT xc-potential as well.
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Response to electric fields from DFPT (cont.)

@ The static macroscopic dielectric matrix is then given by

2
g €o-gq=1— 87;; Zk:ka(él - ViUnk|€nk)

where the sum over v runs over occupied states only.

@ The Born effective charges and piezo-electric tensor may be conveniently
computed from the change in the Hellmann-Feynman forces and the
mechanical stress tensor, due to a change in the wave functions in a finite
difference manner:

1
[uli) = lunic) + Aslnc)
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Examples

TABLE III. The ion clamped static macroscopic dielectric constants €., calculated using the PAW method
and various approximations. &, reports values neglecting local field effects, egp, includes local field effects
in the Hartree approximation, and eppy includes local field effects on the DFT level. %™ are values obtained
by summation over conduction band states, whereas 'R are values obtained using linear response theory
(density functional perturbation theory).

Method C Si SiC AIP GaAs GayAs
Longitudinal
ek 5.98 14.08 7.29 9.12 14.77 15.18
geond 5.98 14.04 7.29 9.10 14.75 15.16
ERmA 5.54 12.66 6.66 7.88 13.31 13.77
sgond 5.55 12.68 6.66 7.88 13.28 13.73
shRL 5.80 13.29 6.97 8.33 13.98 14.42
spm 5.82 13.31 6.97 8.33 13.98 14.37
Transversal
geond 5.68 16.50 8.00 10.63 14.72 1533
£ incl. d projectors 5.99 14.09 7.28 9.11
&4 APW+LO 13.99 15.36
Experiment (Ref. 33) 5.70 11.90 6.52 7.54 11.10

Hummer et al., Phys. Rev. B 73, 045112 (2006).
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Self-consistent response to finite electric fields (PEAD)T

Add the interaction with a small but finite electric field £ to the expression for
the total energy

E[{y©},€] = Eo[{¢'*}] — Q€ - P[{v'“}]

where P[{)(®)}] is the macroscopic polarization as defined in the “modern
theory of polarization” ¥

2
PUC N = (5 3 [ k(i 9uduls)

Adding a corresponding term to the Hamiltonian

&)
H ) = Hols) — e - °F &{1@)”

allows one to solve for {w(‘g)} by means of a direct optimization method
(iterate until self-consistency).

TR. W. Nunes and X. Gonze, Phys. Rev. B 63, 155107 (2001).

iR. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
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PEAD cont.

Once the self-consistent solution {w(‘g)} has been obtained:
@ the static macroscopic dielectric matrix is given by

Py} = Py 23]
&;

(€c0)ij =

@ and the Born effective charges and ion-clamped piezo-electric tensor may
again be conveniently computed from the change in the
Hellmann-Feynman forces and the mechanical stress tensor.

The PEAD method is able to include local field effects in a natural manner (the
self-consistency).

INCAR tags

LCALCPOL = .TRUE. Compute macroscopic polarization.

LCALCEPS = .TRUE. Compute static macroscopic dielectric-, Born effect charge-, and ion-clamped piezo-electric
tensors, both with as well as without local field effects.

EFIELD_PEAD = E_x E_y E_z Electric field used by PEAD routines.
(Default if LCALCEPS=.TRUE.: EFIELD_PEAD = 0.01 0.01 0.01 [eV/A]).

LRPA=.FALSE. Skip the calculations without local field effects (Default).
SKIP_SCF=.TRUE. Skip the calculations with local field effects.
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Example: ion-clamped €., using the HSE hybrid

TABLE 1. Ion clamped (high frequency) macroscopic dielectric
constants €° from TD-DFT using the LDA and the HSE
(#=0.3 A~") hybrid functional in the independent-particle approxi-
mation (Eﬁ,) and including all electron-electron interactions. The
HSE results have been obtained either by solving the Dyson equa-
tion or by applying a finite field and extracting the response from
the change in the polarization (Refs. 30 and 31). For ZnO the di-
electric constants are reported for the wurtzite structure along the a
and ¢ axes. All data are calculated at the experimental volumes.

LDA HSE HSE fin. field
€p € & € € € Expt.
Si 141 1335 1094 1131 10.87 11.37 11.9*

GaAs 14.81 1398 10.64 1095 1054 11.02 11.1*
AIP 9.12 830 727 735 732 735  7.54*
SiC 7.29 696 6.17 643 6.15 6.44  6.52%
C 5.94 580 521 556 525 559 5.7*
ZnOc 531 515 350 371 3.57 377 3.78°
ZnOa 528 5.11 348 3.67 354 372 3.0
LiF 2.06 202 1.85 1.90 1.86 1.91 1.9¢
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Why go beyond DFT and HF-DFT hybrid functionals?
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Figure 8. Band gaps from PBE, PBE(, and HSEO3 calculations,
plotted against data from experiment.
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One-electron energies

o DFT
(—%A + Vet (r) + Vir(r) + ch(r)) Prse(X) = Entetbnic(r)
@ HF-DFT hybrid functionals
<7%A+V:ext( )+ Vau(r )¢nk /Vx r, v )nk (v )dr’ = €pctni(r)
@ Quasiparticle equations

(—%A 4 V(1) + VH(r)> Yot (1) + / S, Bt e ()t = Egetonae(r)
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The GW approximation to X [L. Hedin, Phys. Rev. 139, A796 (1965)]

In the GW approximation the self-energy is given by
¥ =iGW
Where G is the Green's function

Gty = 3 V)

— W — €n + 17 sgn(en — p)

and W is the screened Coulomb kernel W = e v

471'62 1

Wa ar(q,w) = lq+ Gllq + G/ ‘ec’ (q,w)

In reciprocal space (¥,x|2(w)|¥nxk) is given by

oS = 575 S 3 [ W e (e x

a GG’ n'

O il L L [l (2

W—w — €pr_q + i sgn(en — p1)
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GW Quasiparticle equations

The GW quasiparticle equation
(=584 Vess) 4 V@) ) k) + [ 20001, B )" = Brci)
The quasiparticle energies are given by
Enc =R {wnk\ - %A + Vext + Vit + E(Enk)lwnk>]
which may be solved by iteration

1
BN =R (] = A+ Vost 4 Vi + (B )|
N41 N 0X(w)
+(Ene — EnR [Wnﬂw‘w:EﬁkWnH

1
= BN+ ZXR {<wnk| — 5D+ Vet + Vi + S(ENO k) — Eifk}

1
R U )
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G()WO and GWO

@ Single shot GW: GoW,

1
Enk = €nk + anQR |:<wnk| - iA + ‘/ext + VH + E(677‘k)|1/]nk> - 6nk:|

and .
an - <1 - <wnk| agf:.}) ’w:e k|wnk>)

Recipe for GoW calculations.

@ Partially self-consistent GW: GW,

Iteration of the quasiparticle energies in G only

N U (1) (x')
GH T W) = D N iy sen(en = )

n

Recipe for GWy calculations.
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GoWy(PBE) and GW, quasiparticle gaps
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GoWo: MARE=8.5% and GW,: MARE=4.5%
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GoWy(PBE) and GW, quasiparticle gaps con

TABLE 1. Results of DFT-PBE and quasiparticle (GyW,, GW,, and GW) calculations. An 8 X8X 8
k-point mesh is used for all calculations except for the GW case (see text). Experimental values for gaps
(Expt.), lattice constants (a), and the calculated values for spin-orbit coupling (SO) are also provided.
Underlined values correspond to zero-temperature values. The mean absolute relative error (MARE) and the
mean relative error (MRE) are also reported; lead chalcogenides are excluded in the MARE and MRE.

PBE GoW, GW, GW Expt. a SO
PbSe -0.17 0.10 0.15 0.19 0.15° 6.098" 0.40
PbTe -0.05 0.20 0.24 0.26 0.19¢ 6.428" 0.73
PbS -0.06 0.28 0.35 0.39 0.29¢ 5.909 0.36
si 0.62 112 1.20 1.28 L17° 5.4301
GaAs 0.49 1.30 1.42 1.52 1.52¢ 5.648" 0.10
sic 1.35 227 243 2.64 2,408 43508
cds 1.14 2.06 226 255 2420 5.832 0.02
AIP 1.57 2.44 259 2.77 245" 54510
GaN 1.62 2.80 3.00 3.32 3.200 4.5201 0.00
Zn0 0.67 2.12 254 3.20 3.44° 4.580" 0.01
ZnS 2.07 3.29 3.54 3.86 3.91° 5.420" 0.02
C 4.12 5.50 5.68 5.99 5.48¢ 3.567¢
BN 4.45 6.10 6.35 6.73 6.1-6.41 3.615"
MgO 4.76 7.25 7.72 8.47 7.83% 4213
LiF 9.20 13.27 13.96 15.10 14.20m 4.010"
Ar 8.69 13.28 13.87 14.65 14.20° 5.260°
Ne 11.61 19.59 2045 21.44 21.70° 4.430°
MARE 45% 9.9% 5.7% 6.1%
MRE 45% -9.8% -3.6% 47%
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An analogy between GW and hybrid functionals
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Spectral representation of the polarizability

It is cheaper to calculate the polarizability in its spectral representation

Xéa(q,w Z 2wy sgn (w8 (W' + €nk — €nri—q) (fak = fark—q) X

nn’k
X (Wl e o) (Wnne—qle T )

which is related to the imaginary part of x° through
1
s
XG,G'(CLWI) = ;% [X%,G’(Ob w)]

The polarizability x° is then obtained from its spectral representation through
the following Hilbert transform

oo s 1 1
x&,c(a,w) :/ dw'xg,q (q,w') X ( — — ‘
0

w—w —m wH+w 4+

LSPECTRAL=.TRUE. NOMEGA = [integer]
(Default for ALGO = CHI | GWO | GW | scGW | scGW0, when NOMEGA > 2).
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Links and literature

Manual sections

Optical properties and DFPT
Frequency dependent GW calculations

Some literature

| \

“Linear optical properties in the projector-augmented wave methodology”, M. Gajdos, K. Hummer, and G. Kresse,
Phys. Rev. B 73, 045112 (2006).

“Implementation and performance of the frequency-dependent GW method within the PAW framework”,

M. Shishkin and G. Kresse, Phys. Rev. B 74, 035101 (2006).

“Self-consistent GW calculations for semiconductors and insulators”, M. Shishkin and G. Kresse, Phys. Rev. B 75,
235102 (2007).

“Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections”, M. Shishkin,

M. Marsman, and G. Kresse, Phys. rev. Lett. 99, 246403 (2007).

Some nice derivations of equations in this presentation may be found in: Chapter 2 and Chapter 4 of the Ph.D
thesis of Judith Harl.

A\
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