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[ Overview | ]

e Levels of computer-simulations in materials science

e Born-Oppenheimer approximation
Decoupling ions and electrons

Hellmann-Feynman theorem

e ADb-initio electronic structure methods
Hartree-Fock (HF) and post-HF approaches
Density-functional theory (DFT)

Local density approximation
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[Overviewll ]

e DFT methods - an overview

Density-only approaches
Thomas-Fermi theory

Parametrization of the density in terms of orbitals
Kohn-Sham theory

Choice of a basis-set
Plane waves vs. local orbitals
Pseudopotentials vs. all-electron methods

Solving the Kohn-Sham equations
Total-energy minimization: Car-Parrinello dynamics

Iterative diagonalization
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[ Levels of materials modelling J

e Ab-initio techniques
Hartree-Fock and post-HF techniques - Quantum chemistry
Density functional techniques - Materials science

e Tight-binding techniques

e Force-field simulations
Molecular dynamics
Monte Carlo
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[ Born-Oppenheimer approximation | J

Hamiltonian of the coupled electron-ion system:

N ions, coordinates Ry,...,Ry = R, momentaPy,...,Py =P, charges Z4, ..., Zx,
masses My, ..., My

Ne electrons, coordinatesry,...,I’Ny =T, momenta By,..., BN = P, massm

Fﬁ? 22,6
H 2 + Z I F’J|+ |RI RJ\ Z

— TN + Te —I—Vee(?) + VNN (R) +VNe(?7 R)

‘RI ﬁ

Schrodinger equation
[Th + Te+ Vee(P) +Van (R) 4+ Vne(T,R)|D(x,R) = Ed(x,R)

x = (T, s) full set of electronic positions and spin variables
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[ Born-Oppenheimer approximation || J

Difference in the time-scales of nuclear and electronic motions —
quasi-separable ansatz

o (x,R) = W(x,R)X(R)

W(x,R) electronic wavefunction, x(R) nuclear wavefunction
X (R) is more localized than W(x,R) — Oix(R) > O,W(x,R) —
decoupled adiabatic Schrodinger equations of electrons and nuclel

[Te+Vee(P) +Ven (F,R)|Wn(X,R) = &n(R)Wn(X,R)

(4)
[Tn +Van(R) +(R)IX(R) — EX(R)

Electronic eigenvalue en(ﬁ) depends parametrically on the ionic positions R
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[ Born-Oppenheimer approximation 111 ]

Adiabatic approximation: lons move on the potential-energy surface of the
electronic ground state only.

()

[Te—l—Vee(?)—I—VeN(?,ﬁ)]LPo(X,ﬁ) = So(ﬁ)LPo(X ﬁ)
1

TN +VANR) +ER)X(RY) = 2X(R,1)

Neglect quantum effects in ionic dynamics — replace time-dependent
lonic Schrodinger equation by classical Newtonian equation of motion

(6)

Force —0,Eq(R) contains contributions from the direct ion-ion interaction
and a term from the gradient of the electronic total energy
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[ Hellmann-Feynman theorem J

D|£0(|§)

+(Wo | He(R) | 0y Wo)
= (Wo(R) | OiHe(R) | Wo(R))
First and third terms in the derivative vanish due to variational property of

the ground-state — Forces acting on the ions are given by the expectation
value of the gradient of the electronic Hamiltonian in the ground-state

The electronic Schrodinger equation and the Newtonian equations of
motion of the ions, coupled via the Hellmann-Feynman theorem are the
basis of the Car-Parrinello method.
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[ Ab-initio eectronic structure - Hartree-Fock methods ]

Quantum chemistry: Hartree-Fock and post-HF techniques
- Many-electron wavefunctions = Slater-determinants

Gy (A1) - Gy (AN)

Lpgl...aN (q17 e 7qN) — \/LN_|

Qo (A1) -+ Qo (ON)
1

— YNl %<_1)PPCPG1(CI1) - Qay (CIN)
- Variational condition
W2 H [ W7)
(Pa ] we)
Variation with respect to the one-electron orbitals @y

6< =0
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[ Hartree-Fock methods I | ]

— Hartree-Fock equations
~2
(-5eb- %) am+et 5 T Ol @)

o (M@ (T)
e JZAsziszjf o 4°r @;(F) = & (7)

J#

Problems with Hartree-Fock calculations
e Computational effort scales badly with the number of electrons

e Neglect of correlations
- Too wide band gaps, too small band widths

- Exchange-operator for metallic systems singular at the Fermi level
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[ Post Hartree-Fock methods]

Express wavefunction as linear combination of Slater determinants to
Include correlation — ”Configuration interactions” - HF-CI

e Even higher computational effort, scaling worse
e Convergence problematic

e Metals 77?77
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[ Ab-initio electronic structure - Density-functional theoryJ

Hohenberg-Kohn-Sham theorem:

- The ground-state energy of a many-body system is a unique functional of
the particle density, Eqg = E[(T)].

- The functional E[(T)] has its minimum relative to variations dn(T) of the
particle density at the equilibrium density ng(F),

E = E[no(F)] = min {E[(F)]}

SE[n(F
5£1r2(?))] In(r)=no(r)=0

J. HAFNER, AB-INITIO MATERIALS SIMULATIONS Page 12



[ Density-functional theory || ]

Total-energy functional

E[n] = T[n]+ER [n]+En] + /V(?)n(?)d?’r

n]... Hartree energy (electron-electron repulsion),
n]...exchange and correlation energies,

V (T) external potential

- the exact form of T [n] and Ey. is unknown !

Local density approximation - ”density only”:

- Approximate the functionals T [n] and Exc[n] by the corresponding
energies of a homogeneous electron gas of the same local density
— Thomas-Fermi theory
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[ Density-functional theory 111 J

Local density approximation - Kohn-Sham theory:
- Parametrize the particle density in terms of a set of one-electron orbitals
representing a non-interacting reference system

n(r) =5 la@ (13)

- Calculate non-interacting kinetic energy in terms of the @ (7)’s,

=3 @ (—%DZ) @[T (1)

- Determine the optimal one-electron orbitals using the variational condition

(15)
— Kohn-Sham equations
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[ Density-functional theory 1V ]

E[n] = T[n] + EM[n] + Exe[n] + / V (F)n(P)d3r (16)
with the exchange-correlation energy
En(0] = [ n(Mechn(f]d, (17)

where &xc[n(TF)] is the exchange-correlation energy of a homogeneous
electron gas with the local density n(r) — Kohn-Sham equations:

2m

\ .

" |
{_ N +V(T’)+e2/ |§(j;d3r+uxc[n(?)l}(g(r) _eq(f)  (18)

Vet f (?)

with the exchange-correlation potential

~ OEx[n(M)]  ¥{n(Pexc[n(P)]}
b0 = —50@ =~ an(m)
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[ Solving the Kohn-Sham equations | ]

Choice of a basis set

Plane waves and related basis functions
Plane waves
(Linearized) augmented plane waves - (L)APW'’s
(Linearized) muffin-tin orbitals - (L)MTQO’s
Projector augmented waves -PAW’s

Localized orbitals
Atomic orbitals - LCAO’s
Gaussian orbitals

Mixed basis sets

Discrete variable representations
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[Basissetsl]

Localized orbitals

Well localized orbitals allow, at least in principle, linear scaling of DFT
calculations with the system size.

Loss of accuracy for strong localization

Basis depends on ionic positions — Pulay corrections have to be
added to the Hellmann-Feynman forces

Basis-set completness and superposition errors are difficult to control

For Gaussians: many integrals appearing in the DFT functional can be
done analytically
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[Basissetsll]

Plane waves (PW’s)
Natural choice for system with periodic boundary conditions

It is easy to pass from real- to reciprocal space representation (and vice
versa) by FFT

No Pulay correction to forces on atoms
Basis set convergence easy to control

Convergence slow —>

- Electron-ion interaction must be represented by pseudopotentials or
projector-augmented wave (PAW) potentials

- Use LAPW'’s or mixed basis sets
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[ Pseudopotentials | J

e Slow convergence of PW expansion caused by the necessity to
reproduce nodal character of valence orbitals

e Nodes are the consequence of the orthogonality to the tightly-bound
core-orbitals —

e Eliminate the tightly-bound core states and the strong potential binding
these states:
- Use "frozen-core” approximation

- Project Kohn-Sham equations onto sub-space orthogonal to
core-states — orthogonalized plane waves ...., or

- Replace strong electron-ion potential by a weak pseudopotential
which has the same scattering properties as the all-electron potential
beyond a given cut-off radius
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[ Pseudopotentials || ]

Scattering approach to pseudopotentials
Perform all-electron calculation for atom or 1on at a reference energy €
Define a cut-off radius r; well outside the node of the highest core-state

Construct a pseudo valence-orbital @ that is identical to the all-electron
orbital ¢ for r > r¢, but nodeless for r < r¢ and continuous and
continuously differentiable at r

The scattering phase-shifts for electrons agree (modulo 2m) if the
logarithmic derivatives of ¢ and @ agree on the surface of the cut-off
sphere:

0 logp(r,e) 0 loga(re) _
o = o , atr=rg (20)
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[ Pseudopotentials |1 ]

Modern pseudopotentials

e Norm-conserving pseudopotentials (NC-PP)
Norm-conservation: charge within cut-off sphere fixed
High cut-off energies for first-row and transition elements

e Ultrasoft pseudopotentials - (US-PP)

Norm-conservation relaxed - more freedom for pseudizing 2p and
3d states

Add augmentation charges inside the cut-off sphere to correct
charge

Multiple reference energies - improved transferability

Lower cut-off energies
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[ Pseudopotentials IV ]

Projector-augmented waves - PAW’s

- Pseudization as for ultrasoft potentials
- Reconstruction of exact wavefunction in the core region —
Decomposition of wavefunctions (e, ®1me - partial waves)

| n) = | @) — 3 | ®me)Cime + 5 | dime)Cine

atoms atoms

exact WF  pseudoWF pseudo onsite WF  exact onsite WF  (21)

(augmentation) (compensation)

Pseudo-WF represented on FFT-grid, on-site terms on atom-centred radial
grids

Same decomposition holds for charge densities, kinetic, Hartree, and
exchange-correlation energies and potentials
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[ Pseudopotentials vs. all-electron methods J

FLAPW
e Plane-wave expansion in interstitial region

e Expansion in terms of spherical waves inside muffin-tin spheres (up to
| =12)

US-PP, PAW
e Plane-wave expansion throughout entire cell
e Onsite terms represented on radial grids (up to | = 2(3))

PAW’s combine the accuracy of all-electron methods such as FLAPW with
the efficiency of pseudopotentials

J. HAFNER, AB-INITIO MATERIALS SIMULATIONS Page 23



[ Solving the Kohn-Sham equations | ]

Direct minimization of the Kohn-Sham total-energy functional

Preconditioned conjugate-gradient minimization

Gradient: R(T) = { — %DZ +Vett (F,{@ (T'}) — ¢ }cn (1) (22)

Car-Parrinello (CP) method: Use dynamical-simulated annealing
approach for minimization — pseudo-Newtonian equations of motion
for coupled electron-ion system

Difficulties with direct minimization approaches:
Difficult to keep wavefunctions orthogonal
Bad scaling for metallic systems (”charge sloshing™)

In CP calculations: no adiabatic decoupling for metals, the system
drifts away from the Born-Oppenheimer surface”
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[ Solving the Kohn-Sham equations || J

Iterative matrix diagonalization and mixing

General strategy:

e Start with a set of trial vectors (wavefunctions) representing all
occupied and a few empty eigenstates: {@, |n=1,...,Npands}

Improve each wavefunction by adding a fraction of the residual vector

[ R(n)),

[R(@n)) = (H=&"") [@h), &P =(n|H @) (23)
After updating all states, perform subspace diagonalization

Calculate new charge density pout

Determine optimal new input-charge density (mixing old pin, and pout)

Iterate to selfconsistency
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[ Solving the Kohn-Sham equations 111 J

Algorithms implemented in VASP

e Updating the wavefunctions

- Blocked Davidson algorithm

- RMM-DIIS: Residuum minimization method - direct inversion in
the iterative subspace: minimize norm (Rp, | Rn) of residual vector
to each eigenstate (no orthogonality constraint)

e Mixing:
- DIS
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[ lonic structure and dynamics | J

Static optimization of crystal structure

Atomic coordinates at fixed cell-shape:Hellmann-Feynman forces
Geometry of the unit cell: Hellmann-Feynman stresses

Algorithms implemented in VASP:
e Conjugate gradient technique
e Quasi-Newton scheme

e Damped molecular dynamics
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[ lonic structure and dynamics || ]

Ab-initio molecular dynamics (AIMD)
e Car-Parrinello MD (not implemented in VASP):

- Works well for insulators and semiconductors
- Time-step controlled by evolution of eigenstates

- For metals, the systems tends to drift away from the
Born-Oppenheimer surface due to the coupling of electrons and ions

- Must use "Two-thermostat” approach for metals

e MD on the Born-Oppenheimer surface: Hellmann-Feynman MD

- Stable also for metals, canonical ensemble realized using Nosé
thermostat

- Time-step controlled by ionic dynamics
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