Sampling the Brillouin-zone:

Institut fiir Materialphysik and
Center for Computational Materials Science

Universitat Wien, Sensengasse 8, A-1090 Wien, Austria
" oﬂal Mate,.'

CMsa UNIVERSITAT G i)

V% Center §oF

A. EICHLER, SAMPLING THE BRILLOUIN-ZONE

imulation

Page 1



[ Overview ]

introduction
k-point meshes
Smearing methods

What to do in practice

A. EICHLER, SAMPLING THE BRILLOUIN-ZONE Page 2



[ Introduction ]

For many properties
(e.g.: density of states, charge density, matrix elements, response functions, ...)
integrals (/) over the Brillouin-zone are necessary:

I(e) = QLBZ [ Fle)3em —e)ak

To evaluate computationally
integrals = weighted sum over special k-points

=/
Qg7

BZ
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[ k-points meshes - The idea of special points J

Chadi, Cohen, PRB 8 (1973) 5747.

e function f(k) with complete lattice symmetry

e introduce symmetrized plane-waves (SPW):

An(k)= ¥ %
|R|:Cm

sum over symmetry-equivalent R

Cm S Cm—l—l

SPW <« ’shell” of lattice vectors

e develope f(K) in Fourier-series (in SPW)

F) = fo+ il FnAm(K)
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e evaluate integral (=average) over Brillouin-zone

= e | SRk

with:% [An(K)dk=0 m=1,2,...
BZ

e taking n k-points with weighting factors wy so that

Y o An(ki) =0 m=1,...,N
i=1

= f = weighted sum over k-points for variations of f that can be described within the
’shell” corresponding to Cy.
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[ Monkhorst and Pack (1976): ]

Idea: equally spaced mesh in Brillouin-zone.

Construction-rule:

kprs = upb1 + u, by + usbs

_ 2r—q,—1 _
l/tr—z—q: 7'—1,2,...

b; reciprocal lattice-vectors
qr determines number of

k-points in r-direction
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Example:

e quadratic 2-dimensional lattice

® g1 = g2 =4 = 16 k-points

only 3 inequivalent k-points (= IBZ)

e
g
I

1
4
1
4
1
2
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Interpretation:

representation of functionF (k) on a discrete equally-spaced mesh

N
Y a,cos(2mnk)
n=0

0

density of mesh < more Fourier-components = higher accuracy

Common meshes :
Two choices for the center of the mesh

e centered on I' (= I belongs to mesh).

e centered around I'. (can break symmetry !!)
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Algorithm:
e calculate equally spaced-mesh

e shift the mesh if desired

e apply all symmetry operations of Bravaislattice to all k-points

extract the irreducible k-points (= IBZ)

calculate the proper weighting

A. EICHLER, SAMPLING THE BRILLOUIN-ZONE Page 9



[ Smearing methods ]

Problem: in metallic systems Brillouin-zone integrals over functions that are
discontinuous at the Fermi-level.

= high Fourier-components =- dense grid is necessary.

Solution: replace step function by a smoother function.

Example: bandstructure energy

kakenk@(enk — 1)

I x<0

with:0(x) =
0 x>0

= Y o f () i 0

nk

necessary: appropriate function f = f equivalent to partial occupancies.
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o : €k — 1
[ Fermi-Dirac function J f ( a y) = —
exp (“EE) + 1

o

consequence: energy is no longer variational with respect to the partial occupacies f.

F= E_ZGS(fn)
S(f) = —1fInf+ (1= f)in(1 - f)]
(3) G:kBT

F free energy.
new variational functional - defined by (1).

S(f) entropy
of a system of non-interacting electrons at a finite temperature T.

) Smearing parameter.

can be interpreted as finite temperature via (3).

= calculations at finite temperature are possible (Mermin 1965)

A. EICHLER, SAMPLING THE BRILLOUIN-ZONE Page 11



Consistency:

F'=E _ZGS(fn)

S(f) =—=[fInf+ (1 = f)In(1 - f)]
O = kBT

o [F—u (;fn—N)} =0

oF aS

o~ Oof H=0
B = —[Inf+1-In(1—f)—1] =In'=
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[ Gaussian smearing ]

broadening of energy-levels with Gaussian function.
= f becomes an integral of the Gaussian function:

() =2l e ()]

no analytical inversion of the error-function erf exists
= entropy and free energy cannot be written in terms of f.

() ~maoe ()]

e G has no physical interpretation.

e variational functional F (o) differs from E(0).

e forces are calculated as derivatives of the variational quantity (F(o)).

= not necessarily equal to forces at £(0).
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Improvement: extrapolation to ¢ — 0.
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[ Method of Methfessel and Paxton (1989) ]
Idea:
expansion of stepfunction in a complete set of or- /\

thogonal functions
= term of order 0 = integral over Gaussians

= generalization of Gaussian broadening with
functions of higher order.

gle)Sole-Eg)
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Hermite-polynomial of order N

advantages:
e deviation of F (o) from E(0) only of order 2+N in ¢

e cxtrapolation for ¢ — 0 usually not necessary, but also possible:

E(0) ~ E(0) = 515 (N+ 1)F(0) + E(0))
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The significance of N and ¢

MP of order N leads to a negligible error, if X(€) is representable as a polynomial of
degree 2N around €.

linewidth ¢ can be increased for higher order to obtain the same accuracy

“entropy term” (S =), Sy( f,)) describes deviation of F (o) from E (o).

= if S< few meV
then £(c) ~ F(c) ~ E(c) =~ E(0).

= forces correct within that limit.

in practice: smearings of order N=1 or 2 are sufficient
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[ Linear tetrahedron method ]

Idea:

1. dividing up the Brillouin-zone into tetrahedra

2. Linear interpolation of the function to be integrated

X,, within these tetrahedra

3. integration of the interpolated function X,
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ad 1.

How to select mesh for tetrahedra

map out the IBZ

A

—

use special points
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ad 2. interpolation

-

X, (k) = %le(k)Xn(kj)

k-points

~

J
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ad 3. k-space integration: simplification by Blochl (1993)

remapping of the tetrahedra onto the k-points

o =g [ dkej(K)7 (e (K)

Qpz

= effective weights ®,; for k-points.

= k-space summation:
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Drawbacks:

e tetrahedra can break the symmetry of the Bra-
vaislattice

e at least 4 k-points are necessary

e I must be included

e linear interpolation under- or overestimates

the real curve
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[ Corrections by Blochl (1993) ]

Idea:
e linear interpolation under- or overestimates the real curve
e for full-bands or insulators these errors cancel

e for metals: correction of quadratic errors is possible:

4
00K, o D1 (€F) -21 (&jn — €kn)
=

corners (k-point) of the tetrahedron7

DOS for the tetrahedron T at €.
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Result:
e best k-point convergence for energy

e forces:

— with Blochl corrections the new effective partial occupancies do not minimize the

groundstate total energy

— variation of occupancies ®,x w.r.t. the ionic positions would be necessary

— with US-PP and PAW practically impossible
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[ Convergence rests ] (from P.Blochl, O. Jepsen, O.K. Andersen, PRB 49,16223 (1994).)

bandstructure energy of silicon:
conventional LT -method vs.
LT+Blochl corrections

bandstructure energy vs. k-point spacing A

100 200 300
Number of irreducible k points

20 |- Cu
15 |-
10 |

1
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[ What to do in practice ]

energy/DOS calculations:

linear tetrahedron method with Blochl corrections
ISMEAR=-5

calculation of forces:
e semiconductors: Gaussian smearing (ISMEAR=0; SIGMA=0.1)
e metals : Methfessel-Paxton (N=1 or 2)
e always: test for energy with LT+Blochl-corr.

in any case:
careful checks for k-point convergence are necessary
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[ The KPOINTS - file: ]

1> k-points for a metal
2> 0

3> Gamma point

4> 9 9 9

5> 0 0 0

Ist line: comment
2nd line: 0 (= automatic generation)
3rd line: Monkhorst or Gammapoint (centered)

4th line: mesh parameter

Sth line: 0 0 O (shift)
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mesh parameter

e determine the number of intersections in each direction

e longer axes in real-space < shorter axes in k-space

= less intersections necessary for equally spaced mesh

Consequences:

— molecules, atoms (large supercells)
= (1 x 1 x 1)(=T) is enough.

— surfaces (one long direction =- 2-D Brillouin-zone)

= (x x y x 1) for the direction corresponding to the long direction.

_ metals: (9 X9 x 9)/atom
— “typical” values (never trust them!):

semiconductors: (4 x 4 x 4)/atom

A. EICHLER, SAMPLING THE BRILLOUIN-ZONE Page 28



[Example - real-space/ reciprocal cell ]

—

e doubling the cell in real space halves the reciprocal cell
= zone boundary 1s folded back to I'

e same sampling is achieved with halved mesh parameter
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[Example - hexagonal cell ]

before after shiffted to I’
symmetrizafion

e in certain cell geometries (e.g. hexagonal cells) even meshes break the symmetry
e symmetrization results in non equally distributed k-points

e Gamma point centered mesh preserves symmetry
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[ Convergence rests ]

with respectto c... ... and number of k-points in the IBZ
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G.Kresse, J. Furthmiiller, Computat. Mat. Sci. 6, 15 (1996).
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