ELPH DECOMPOSE: Difference between revisions

From VASP Wiki
(→‎Available contributions: Add R matrix and link to PAW formalism)
Line 88: Line 88:
         \tilde{p}_{a j} |
         \tilde{p}_{a j} |
         \tilde{\psi}_{n \mathbf{k}}
         \tilde{\psi}_{n \mathbf{k}}
    \rangle
</math>
:with <math>
R_{a, ij}
\equiv
\langle
        \phi_{a i} |
        \frac{\partial \phi_{a j}}{\partial u_{a}}
    \rangle -
\langle
        \tilde{\phi}_{a i} |
        \frac{\partial \tilde{\phi}_{a j}}{\partial u_{a}}
     \rangle
     \rangle
</math>
</math>
Line 123: Line 135:
</math>
</math>


For more details, please refer to Ref.{{cite|engel:prb:2022}}.
For more details, please refer to Ref.{{cite|engel:prb:2022}}, and consult our documentation on the [[projector-augmented-wave_formalism]].


== References ==
== References ==

Revision as of 16:07, 21 October 2024

Template:Elph release

ELPH_DECOMPOSE = [string]
Default: ELPH_DECOMPOSE = VDPR 

Description: Chooses which contributions to include in the computation of the electron-phonon matrix elements.


The electron-phonon matrix element can be formulated in the projector-augmented-wave (PAW) method in terms of individual contributions[1]. Each contribution can be included by specifying the associated letter in ELPH_DECOMPOSE. We suggest two different combinations to define matrix elements:

ELPH_DECOMPOSE = VDPR
"All-electron" matrix element[1][2]
ELPH_DECOMPOSE = VDQ
"Pseudo" matrix element[1][3]

Available contributions

V - Derivative of pseudopotential, [math]\displaystyle{ \tilde{v} }[/math]
[math]\displaystyle{ g^{(\text{V})}_{m \mathbf{k}', n \mathbf{k}, a} \equiv \langle \tilde{\psi}_{m \mathbf{k}'} | \frac{\partial \tilde{v}}{\partial u_{a}} | \tilde{\psi}_{n \mathbf{k}} \rangle }[/math]
D - Derivative of PAW strength parameters, [math]\displaystyle{ D_{a, ij} }[/math]
[math]\displaystyle{ g^{(\text{D})}_{m \mathbf{k}', n \mathbf{k}, a} \equiv \sum_{bij} \langle \tilde{\psi}_{m \mathbf{k}'} | \tilde{p}_{b i} \rangle \frac{\partial D_{b, ij}}{\partial u_{a}} \langle \tilde{p}_{b j} | \tilde{\psi}_{n \mathbf{k}} \rangle }[/math]
P - Derivative of PAW projectors, [math]\displaystyle{ |\tilde{p}_{ai}\rangle }[/math]
[math]\displaystyle{ \begin{split} g^{(\text{P})}_{m \mathbf{k}', n \mathbf{k}, a} & \equiv \sum_{ij} \langle \tilde{\psi}_{m \mathbf{k}'} | \frac{\partial \tilde{p}_{a i}}{\partial u_{a}} \rangle ( D_{a, ij} - \varepsilon_{n \mathbf{k}} Q_{a, ij} ) \langle \tilde{p}_{a j} | \tilde{\psi}_{n \mathbf{k}} \rangle \\ & + \sum_{ij} \langle \tilde{\psi}_{m \mathbf{k}'} | \tilde{p}_{a i} \rangle ( D_{a, ij} - \varepsilon_{m \mathbf{k}'} Q_{a, ij} ) \langle \frac{\partial \tilde{p}_{a j}}{\partial u_{a}} | \tilde{\psi}_{n \mathbf{k}} \rangle \end{split} }[/math]
R - Derivative of PAW partial waves, [math]\displaystyle{ |\phi_{ai}\rangle }[/math] and [math]\displaystyle{ |\tilde{\phi}_{ai}\rangle }[/math]
[math]\displaystyle{ g^{(\text{R})}_{m \mathbf{k}', n \mathbf{k}, a} \equiv (\varepsilon_{n \mathbf{k}} - \varepsilon_{m \mathbf{k}'}) \sum_{ij} \langle \tilde{\psi}_{m \mathbf{k}'} | \tilde{p}_{a i} \rangle R_{a, ij} \langle \tilde{p}_{a j} | \tilde{\psi}_{n \mathbf{k}} \rangle }[/math]
with [math]\displaystyle{ R_{a, ij} \equiv \langle \phi_{a i} | \frac{\partial \phi_{a j}}{\partial u_{a}} \rangle - \langle \tilde{\phi}_{a i} | \frac{\partial \tilde{\phi}_{a j}}{\partial u_{a}} \rangle }[/math]
Q - Derivative of PAW projectors, [math]\displaystyle{ |\tilde{p}_{ai}\rangle }[/math] (different eigenvalues)
[math]\displaystyle{ \begin{split} g^{(\text{Q})}_{m \mathbf{k}', n \mathbf{k}, a} & \equiv \sum_{ij} \langle \tilde{\psi}_{m \mathbf{k}'} | \frac{\partial \tilde{p}_{a i}}{\partial u_{a}} \rangle ( D_{a, ij} - \varepsilon_{n \mathbf{k}} Q_{a, ij} ) \langle \tilde{p}_{a j} | \tilde{\psi}_{n \mathbf{k}} \rangle \\ & + \sum_{ij} \langle \tilde{\psi}_{m \mathbf{k}'} | \tilde{p}_{a i} \rangle ( D_{a, ij} - \varepsilon_{n \mathbf{k}} Q_{a, ij} ) \langle \frac{\partial \tilde{p}_{a j}}{\partial u_{a}} | \tilde{\psi}_{n \mathbf{k}} \rangle \end{split} }[/math]

For more details, please refer to Ref.[1], and consult our documentation on the projector-augmented-wave_formalism.

References