ELPH_DECOMPOSE

From VASP Wiki
Revision as of 13:41, 21 October 2024 by Mani (talk | contribs) (→‎Available contributions: Add formulas)

Template:Elph release

ELPH_DECOMPOSE = [string]
Default: ELPH_DECOMPOSE = VDPR 

Description: Chooses which contributions to include in the computation of the electron-phonon matrix elements.


The electron-phonon matrix element can be formulated in the projector-augmented-wave (PAW) method in terms of individual contributions[1]. Each contribution can be included by specifying the associated letter in ELPH_DECOMPOSE. We suggest two different combinations to define matrix elements:

ELPH_DECOMPOSE = VDPR
"All-electron" matrix element[1][2]
ELPH_DECOMPOSE = VDQ
"Pseudo" matrix element[1][3]

Available contributions

V
[math]\displaystyle{ g^{(\text{V})}_{m \mathbf{k}', n \mathbf{k}, a} \equiv \langle \tilde{\psi}_{m \mathbf{k}'} | \frac{\partial \widetilde{v}}{\partial u_{a}} | \tilde{\psi}_{n \mathbf{k}} \rangle }[/math]
D
[math]\displaystyle{ g^{(\text{D})}_{m \mathbf{k}', n \mathbf{k}, a} \equiv \sum_{bij} \langle \tilde{\psi}_{m \mathbf{k}'} | \tilde{p}_{b i} \rangle \frac{\partial D_{b, ij}}{\partial u_{a}} \langle \tilde{p}_{b j} | \tilde{\psi}_{n \mathbf{k}} \rangle }[/math]
P
[math]\displaystyle{ \begin{split} g^{(\text{P})}_{m \mathbf{k}', n \mathbf{k}, a} & \equiv \sum_{ij} \langle \tilde{\psi}_{m \mathbf{k}'} | \frac{\partial \tilde{p}_{a i}}{\partial u_{a}} \rangle ( D_{a, ij} - \varepsilon_{n \mathbf{k}} Q_{a, ij} ) \langle \tilde{p}_{a j} | \tilde{\psi}_{n \mathbf{k}} \rangle \\ & + \sum_{ij} \langle \tilde{\psi}_{m \mathbf{k}'} | \tilde{p}_{a i} \rangle ( D_{a, ij} - \varepsilon_{m \mathbf{k}'} Q_{a, ij} ) \langle \frac{\partial \tilde{p}_{a j}}{\partial u_{a}} | \tilde{\psi}_{n \mathbf{k}} \rangle \end{split} }[/math]
R
[math]\displaystyle{ g^{(\text{R})}_{m \mathbf{k}', n \mathbf{k}, a} \equiv (\varepsilon_{n \mathbf{k}} - \varepsilon_{m \mathbf{k}'}) \sum_{ij} \langle \tilde{\psi}_{m \mathbf{k}'} | \tilde{p}_{a i} \rangle R_{a, ij} \langle \tilde{p}_{a j} | \tilde{\psi}_{n \mathbf{k}} \rangle }[/math]
Q
[math]\displaystyle{ \begin{split} g^{(\text{Q})}_{m \mathbf{k}', n \mathbf{k}, a} & \equiv \sum_{ij} \langle \tilde{\psi}_{m \mathbf{k}'} | \frac{\partial \tilde{p}_{a i}}{\partial u_{a}} \rangle ( D_{a, ij} - \varepsilon_{n \mathbf{k}} Q_{a, ij} ) \langle \tilde{p}_{a j} | \tilde{\psi}_{n \mathbf{k}} \rangle \\ & + \sum_{ij} \langle \tilde{\psi}_{m \mathbf{k}'} | \tilde{p}_{a i} \rangle ( D_{a, ij} - \varepsilon_{n \mathbf{k}} Q_{a, ij} ) \langle \frac{\partial \tilde{p}_{a j}}{\partial u_{a}} | \tilde{\psi}_{n \mathbf{k}} \rangle \end{split} }[/math]

For more details, please refer to Ref.[1].

References