ML MRB1: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{TAGDEF|ML_MRB1|[integer]| | {{DISPLAYTITLE:ML_MRB1}} | ||
{{TAGDEF|ML_MRB1|[integer]|12}} | |||
Description: This tag sets the number <math>N_\text{R}^0</math> of radial basis functions used to expand the radial descriptor <math>\rho^{(2)}_i(r)</math> within the machine learning force field method. | Description: This tag sets the number <math>N_\text{R}^0</math> of radial basis functions used to expand the radial descriptor <math>\rho^{(2)}_i(r)</math> within the machine learning force field method. | ||
Line 16: | Line 17: | ||
</math> | </math> | ||
The tag {{TAG|ML_MRB1}} sets the number <math>N_\text{R}^0</math> of radial basis functions to use in this expansion | The tag {{TAG|ML_MRB1}} sets the number <math>N_\text{R}^0</math> of radial basis functions to use in this expansion. | ||
== Related | == Related tags and articles == | ||
{{TAG|ML_LMLFF}}, {{TAG|ML_MRB2}}, {{TAG|ML_W1}}, {{TAG|ML_RCUT1}}, {{TAG|ML_SION1}} | {{TAG|ML_LMLFF}}, {{TAG|ML_MRB2}}, {{TAG|ML_W1}}, {{TAG|ML_RCUT1}}, {{TAG|ML_SION1}} | ||
Line 24: | Line 25: | ||
---- | ---- | ||
[[Category:INCAR]][[Category:Machine | [[Category:INCAR tag]][[Category:Machine-learned force fields]] |
Latest revision as of 08:06, 9 May 2023
ML_MRB1 = [integer]
Default: ML_MRB1 = 12
Description: This tag sets the number [math]\displaystyle{ N_\text{R}^0 }[/math] of radial basis functions used to expand the radial descriptor [math]\displaystyle{ \rho^{(2)}_i(r) }[/math] within the machine learning force field method.
The radial descriptor is constructed from
[math]\displaystyle{ \rho_{i}^{(2)}\left(r\right) = \frac{1}{4\pi} \int \rho_{i}\left(r\hat{\mathbf{r}}\right) d\hat{\mathbf{r}}, \quad \text{where} \quad \rho_{i}\left(\mathbf{r}\right) = \sum\limits_{j=1}^{N_{\mathrm{a}}} f_{\mathrm{cut}}\left(r_{ij}\right) g\left(\mathbf{r}-\mathbf{r}_{ij}\right) }[/math]
and [math]\displaystyle{ g\left(\mathbf{r}\right) }[/math] is an approximation of the delta function. In practice, the continuous function above is transformed into a discrete set of numbers by expanding it into a set of radial basis functions [math]\displaystyle{ \chi_{n0}(r) }[/math] (see this section for more details):
[math]\displaystyle{ \rho_{i}^{(2)}\left(r\right) = \frac{1}{\sqrt{4\pi}} \sum\limits_{n=1}^{N^{0}_{\mathrm{R}}} c_{n00}^{i} \chi_{n0}\left(r\right). }[/math]
The tag ML_MRB1 sets the number [math]\displaystyle{ N_\text{R}^0 }[/math] of radial basis functions to use in this expansion.
Related tags and articles
ML_LMLFF, ML_MRB2, ML_W1, ML_RCUT1, ML_SION1