

Excercise : Constrained MD: H₂@TiO₂ [110]

Faculty of Physics, AG-CMP, University of Vienna

general remarks (1)

 this excercise consists of 3 steps which unfold if you untar the file h2o_on_tio2.tgz

tar zxvf h2o_on_tio2.tgz

- → std_relaxation: geometry relaxation using Hellmann-Feynman forces and a conjugate gradient algorithm
- OnstrMD_microcanonical: constrained MD (fixing the geometry of the water molecule) in a microcanonical emsemble (i.e. without coupling to the thermostat):
- 3 → constrMD_canonical: constrained MD (fixing the geometry of the water molecule) in a canonical emsemble
- while the geometry of the H₂O molecule slightly changes using standard relaxation, the input geometry (d_{O-H} and \angle HOH) is enforced to be kept fixed using the constrained MD method

general remarks (2)

for all calculations of this excercise, use:

- PAW-PBE pseudopotentials (potpaw_PBE_54.tar.gz)
- an orthorhombic unit cell with vacuum width of 11.82Å and the same starting configuration:
 - H_2O is placed 3.18Åabove the surface Ti atom
 - the d_{O-H} is slightly elongated (1.03Å instead of 0.97Å),
 - \angle is sightly increased as well (102.21° instead of 102.18°) to show the effects of constraint vs. relaxation)
- the bottom layer of the TiO₂ slab is kept fixed to account for the small slab thickness and to reduce the computing time.
- a $5 \times 5 \times 1$ Monkhurst-Pack k-mesh:

Constrained MD: H_2O @ TiO₂ [110]: standard geometry relaxation

POSCAR

Ti02+H20 1.0000000000000000 4.61949 0.00000 0.00000 0.00000 4.61949 0.00000 0 00000 0 00000 14 7788 Ti O H 252 Selective Direct 0.00000 0.00000 0.00000 F F F 0.50000 0.50000 0.10000 T T T 0.30374 0.30374 0.00000 F F F 0.69625 0.69625 0.00000 F F F 0.19625 0.80374 0.10000 T T T 0.80374 0.19625 0.10000 T T T 0.50000 0.50000 0.31500 T T T 0.37720 0.62280 0.35881 T T T 0 62280 0 37720 0 35881 T T T

Input Geometry for all runs

- use Selective dynamics
- fix the position of bottom layer of the slab F F F
- positions of the H₂O atoms (atoms # 7, 8, 9)

Adsorption of H_2O on TiO₂ [110]: standard relaxation

INCAR

SYSTEM = $H20_Ti02$ ENMAX = 400 ISMEAR = 2 SIGMA = 0.05 EDIFF = 1e-6 EDIFFG = -0.05 IBRION = 2 POTIM = 0.5 NSW = 200

standard relaxation

- *E_{cutoff}*: default value
- max. force on the relaxed atoms: 0.05 eV/AA
- BZ integration: MP
- ionic relaxation: CG-algorithm

d _{Ti-O}	2.23Å
d _{O-H}	0.97Å
\angle HOH	111.8°

- H_2O remains upright
- no rotation
- \bullet \angle HOH is increased by 9.6°
- d_{O-H} adopts its equilibrium value

Constrained MD: Adsorption of H_2O on TiO_2 [110]

- all MDs run for 100 steps (100 fs), to keep the run-time at a reasonable level. This is not sufficient to reach equilibration
- VASP has to be compiled with -Dtbdyn

IC								
R	7	8	0					
R	7	9	0					
A	8	7	9	0				

- in the file ICONST the constraints to the system are defined:
- **R** fix d_{O-H} of H₂O
- A fix the HOH bond angle
- 0 'status': 0 indicates a constraint to the atoms

Constrained MD: Adsorption of H_2O on TiO_2 [110]

INCAR

```
SYSTEM = H20_{Ti}02
ENMAX = 400
ISMEAR = 2
SIGMA = 0.05
ISMEAR = 0
EDIFF = 1e-6
EDIFFG = -0.05
TBRTON = 0
POTTM = 1.
MDALGO = 1
ANDERSEN PROB = 0.9
TEBEG = 10; TEEND = 10
NSW = 100
```

- **IBRION** = 0: use MD
- **POTIM** = 1: step size: 1fs
- MDALGO = 1: use the Andersen Thermostat
- ANDERSEN_PROB = 0.9A collision probability with the thermostat canonical ensemble
- ANDERSEN_PROB =0.0 for microcanonical ensembles
- NSW run-time of the MD: 100 fs

Constrained MD: Adsorption of H_2O on TiO_2 [110]

REPORT

- for all advanced MD runs, VASP writes all MD-related output to a file **REPORT**:
- the used Thermostat
- the number of steps to reach convergence of the SHAKE algorithm
- the constraint variables
- E_{tot} and the contributions of E_{pot} , E_{kin} and E_{const}
- T

canonical ensemble: snapshot after 100 steps

d _{Ti-O}	3.19Å
d _{O-H}	1.03Å
\angle HOH	102.2°

- H₂O remains upright
- slight rotation around z
- due to the low T (10K), the geometry is almost unchanged: H₂O is still at a large distance to the slab, therefore there are almost no changes in the the TiO₂ surface layer

microcanonical ensemble: snapshot after 100 steps

d _{Ti-O}	3.12Å
d _{O-H}	1.03Å
\angle HOH	102.21°

• due the conservation of the total energy of the system, the decrase of E_{pot} leads to an increase of E_{kin} and hence an increase of T

$$(T = \frac{1}{3k_B T N_{ions}} \sum_{i=1}^{N(ions)} E_{kin}(i))$$

- H₂O tilts (almost parallel to the surface)
- the surface layer is pushed inwards