ML MRB1: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{TAGDEF|ML_FF_MRB1_MB|[integer]|{{TAG|ML_FF_MRB2_MB}}/2}}
{{DISPLAYTITLE:ML_MRB1}}
{{TAGDEF|ML_MRB1|[integer]|12}}


Description: This tag sets the number of radial basis sets used to expand the atomic distribution for the radial descriptor within the machine learning force field method.
Description: This tag sets the number <math>N_\text{R}^0</math> of radial basis functions used to expand the radial descriptor <math>\rho^{(2)}_i(r)</math> within the machine learning force field method.
----
----
The radial descriptor is constructed from


The value of {{TAG|ML_FF_MRB1_MB}} depends on the choice of the cut-off radius ({{TAG|ML_FF_RCUT1_MB}} and the width of the Gaussian functions used in the broadening of the atomic distributions {{TAG|ML_FF_SION1_MB}}. The error of the basis calculated on a predetermined grid is calculated on the beginning of the calculations (for details see reference {{cite|jinnouchi2:arx:2019}}).
<math>
\rho_{i}^{(2)}\left(r\right) = \frac{1}{4\pi} \int \rho_{i}\left(r\hat{\mathbf{r}}\right) d\hat{\mathbf{r}}, \quad \text{where} \quad
\rho_{i}\left(\mathbf{r}\right) = \sum\limits_{j=1}^{N_{\mathrm{a}}} f_{\mathrm{cut}}\left(r_{ij}\right) g\left(\mathbf{r}-\mathbf{r}_{ij}\right)
</math>


== References ==
and <math>g\left(\mathbf{r}\right)</math> is an approximation of the delta function. In practice, the continuous function above is transformed into a discrete set of numbers by expanding it into a set of radial basis functions <math>\chi_{n0}(r)</math> (see [[Machine learning force field: Theory#Basis set expansion|this section]] for more details):
<references/>


<noinclude>
<math>
\rho_{i}^{(2)}\left(r\right) = \frac{1}{\sqrt{4\pi}} \sum\limits_{n=1}^{N^{0}_{\mathrm{R}}} c_{n00}^{i} \chi_{n0}\left(r\right).
</math>
 
The tag {{TAG|ML_MRB1}} sets the number <math>N_\text{R}^0</math> of radial basis functions to use in this expansion.
   
   
== Related tags and articles ==
{{TAG|ML_LMLFF}}, {{TAG|ML_MRB2}}, {{TAG|ML_W1}}, {{TAG|ML_RCUT1}}, {{TAG|ML_SION1}}


== Related Tags and Sections ==
{{sc|ML_MRB1|Examples|Examples that use this tag}}
{{TAG|ML_FF_LMLFF}}, {{TAG|ML_FF_MRB2_MB}}, {{TAG|ML_FF_W1_MB}}, {{TAG|ML_FF_W2_MB}}
 
{{sc|ML_FF_MRB1_MB|Examples|Examples that use this tag}}
----
----


[[Category:INCAR]][[Category:Machine Learning]][[Category:Machine Learned Force Fields]][[Category:VASP6]]
[[Category:INCAR tag]][[Category:Machine-learned force fields]]

Latest revision as of 08:06, 9 May 2023

ML_MRB1 = [integer]
Default: ML_MRB1 = 12 

Description: This tag sets the number [math]\displaystyle{ N_\text{R}^0 }[/math] of radial basis functions used to expand the radial descriptor [math]\displaystyle{ \rho^{(2)}_i(r) }[/math] within the machine learning force field method.


The radial descriptor is constructed from

[math]\displaystyle{ \rho_{i}^{(2)}\left(r\right) = \frac{1}{4\pi} \int \rho_{i}\left(r\hat{\mathbf{r}}\right) d\hat{\mathbf{r}}, \quad \text{where} \quad \rho_{i}\left(\mathbf{r}\right) = \sum\limits_{j=1}^{N_{\mathrm{a}}} f_{\mathrm{cut}}\left(r_{ij}\right) g\left(\mathbf{r}-\mathbf{r}_{ij}\right) }[/math]

and [math]\displaystyle{ g\left(\mathbf{r}\right) }[/math] is an approximation of the delta function. In practice, the continuous function above is transformed into a discrete set of numbers by expanding it into a set of radial basis functions [math]\displaystyle{ \chi_{n0}(r) }[/math] (see this section for more details):

[math]\displaystyle{ \rho_{i}^{(2)}\left(r\right) = \frac{1}{\sqrt{4\pi}} \sum\limits_{n=1}^{N^{0}_{\mathrm{R}}} c_{n00}^{i} \chi_{n0}\left(r\right). }[/math]

The tag ML_MRB1 sets the number [math]\displaystyle{ N_\text{R}^0 }[/math] of radial basis functions to use in this expansion.

Related tags and articles

ML_LMLFF, ML_MRB2, ML_W1, ML_RCUT1, ML_SION1

Examples that use this tag