EFERMI NEDOS: Difference between revisions
(Created page with "{{DISPLAYTITLE:EFERMI_NEDOS}} {{TAGDEF|EFERMI_NEDOS|[integer]|21}} Description: Choose the number of points in the Gauss-Legendre integration grid used to evaluate the Fermi–Dirac distribution and determine the Fermi level. {{Available|6.5.0}} ---- During the self-consistent solution of the electronic structure, the Fermi level is obtained by integrating the electronic density of states weighted by the Fermi–Dirac occupation function. By performing a variable tr...") |
m (Huebsch moved page Construction:EFERMI NEDOS to EFERMI NEDOS without leaving a redirect) |
||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 2: | Line 2: | ||
{{TAGDEF|EFERMI_NEDOS|[integer]|21}} | {{TAGDEF|EFERMI_NEDOS|[integer]|21}} | ||
Description: | Description: Number of Gauss–Legendre integration points used to evaluate the Fermi–Dirac distribution and determine the Fermi level at finite temperature using the tetrahedron method only with {{TAGDEF|ISMEAR|−14 or -15}}. | ||
{{Available|6.5.0}} | {{Available|6.5.0}} | ||
---- | ---- | ||
'''EFERMI_NEDOS''' sets the number of points in the Gauss–Legendre grid used to integrate the Fermi–Dirac distribution for determining the Fermi level within the [[Smearing_technique#Tetrahedron_methods| tetrahedron method]] when {{TAGDEF|ISMEAR|−14 or -15}}. | |||
Larger values improve accuracy, especially at low temperatures or with sharp features in the [[:Category:Density of states|electronic DOS]], but also increase computational cost. | |||
A brief convergence test is recommended in case very accurate occupancies are required, e.g., in the context of [[Transport coefficients including electron-phonon scattering|transport calculations]]. | |||
==Implementation details== | |||
At <math>T=0</math>, the integrated and differential densities of states are | |||
$$ | |||
n(\epsilon)=\sum_{n\mathbf{k}}\theta(\epsilon-\epsilon_{n\mathbf{k}}), \qquad | |||
g(\epsilon)=\sum_{n\mathbf{k}}\delta(\epsilon-\epsilon_{n\mathbf{k}}). | |||
$$ | |||
At finite temperature, | |||
$$ | |||
N_e(\epsilon_F,T)= | |||
\sum_{n\mathbf{k}}f(\epsilon_{n\mathbf{k}}-\epsilon_F,T) | |||
=\int g(\epsilon)f(\epsilon-\epsilon_F,T)\,d\epsilon. | |||
\tag{1} | |||
$$ | |||
With the substitution <math>x = 1 - 2f(\epsilon-\epsilon_F,T)</math>, | |||
$$ | |||
\epsilon = k_BT\ln\!\frac{1+x}{1-x}+\epsilon_F, \qquad | |||
d\epsilon = -k_BT\,\frac{2}{x^2-1}\,dx, | |||
$$ | |||
Eq. (1) becomes | |||
$$ | |||
N_e(\epsilon_F,T)= | |||
\frac{1}{2}\int_{-1}^{1} | |||
n\!\left(k_BT\ln\!\frac{1+x}{1-x}+\epsilon_F\right)\,dx. | |||
$$ | |||
In practice, this integral is discretized as | |||
$$ | |||
N_e(\epsilon_F,T)\simeq | |||
\frac{1}{2}\sum_{i=1}^{N}w_i\, | |||
n\!\left(k_BT\ln\!\frac{1+x_i}{1-x_i}+\epsilon_F\right), | |||
$$ | |||
where <math>w_i</math> and <math>x_i</math> are Gauss–Legendre weights and abscissas. | |||
The step functions \(\theta(\epsilon-\epsilon_{n\mathbf{k}})\) entering \(n(\epsilon)\) are evaluated using the tetrahedron method, with the number of energy points <math>N</math> given by {{TAG|EFERMI_NEDOS}}. | |||
==Related tags and articles== | ==Related tags and articles== | ||
| Line 21: | Line 53: | ||
[[K-point integration]] | [[K-point integration]] | ||
[[Category:INCAR tag]][[Category:Electronic occupancy]] | [[Category:INCAR tag]] | ||
[[Category:Electronic occupancy]] | |||
[[Category:Density of states]] | |||
Latest revision as of 12:07, 15 October 2025
EFERMI_NEDOS = [integer]
Default: EFERMI_NEDOS = 21
Description: Number of Gauss–Legendre integration points used to evaluate the Fermi–Dirac distribution and determine the Fermi level at finite temperature using the tetrahedron method only with ISMEAR = −14 or -15 .
| Mind: Available as of VASP 6.5.0 |
EFERMI_NEDOS sets the number of points in the Gauss–Legendre grid used to integrate the Fermi–Dirac distribution for determining the Fermi level within the tetrahedron method when ISMEAR = −14 or -15 . Larger values improve accuracy, especially at low temperatures or with sharp features in the electronic DOS, but also increase computational cost. A brief convergence test is recommended in case very accurate occupancies are required, e.g., in the context of transport calculations.
Implementation details
At [math]\displaystyle{ T=0 }[/math], the integrated and differential densities of states are $$ n(\epsilon)=\sum_{n\mathbf{k}}\theta(\epsilon-\epsilon_{n\mathbf{k}}), \qquad g(\epsilon)=\sum_{n\mathbf{k}}\delta(\epsilon-\epsilon_{n\mathbf{k}}). $$
At finite temperature, $$ N_e(\epsilon_F,T)= \sum_{n\mathbf{k}}f(\epsilon_{n\mathbf{k}}-\epsilon_F,T) =\int g(\epsilon)f(\epsilon-\epsilon_F,T)\,d\epsilon. \tag{1} $$
With the substitution [math]\displaystyle{ x = 1 - 2f(\epsilon-\epsilon_F,T) }[/math], $$ \epsilon = k_BT\ln\!\frac{1+x}{1-x}+\epsilon_F, \qquad d\epsilon = -k_BT\,\frac{2}{x^2-1}\,dx, $$ Eq. (1) becomes $$ N_e(\epsilon_F,T)= \frac{1}{2}\int_{-1}^{1} n\!\left(k_BT\ln\!\frac{1+x}{1-x}+\epsilon_F\right)\,dx. $$
In practice, this integral is discretized as $$ N_e(\epsilon_F,T)\simeq \frac{1}{2}\sum_{i=1}^{N}w_i\, n\!\left(k_BT\ln\!\frac{1+x_i}{1-x_i}+\epsilon_F\right), $$ where [math]\displaystyle{ w_i }[/math] and [math]\displaystyle{ x_i }[/math] are Gauss–Legendre weights and abscissas. The step functions \(\theta(\epsilon-\epsilon_{n\mathbf{k}})\) entering \(n(\epsilon)\) are evaluated using the tetrahedron method, with the number of energy points [math]\displaystyle{ N }[/math] given by EFERMI_NEDOS.