EFERMI NEDOS: Difference between revisions

From VASP Wiki
No edit summary
m (Huebsch moved page Construction:EFERMI NEDOS to EFERMI NEDOS without leaving a redirect)
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
{{TAGDEF|EFERMI_NEDOS|[integer]|21}}
{{TAGDEF|EFERMI_NEDOS|[integer]|21}}


Description: Number of Gauss–Legendre integration points used to evaluate the Fermi–Dirac distribution and determine the Fermi level at finite temperature using the tetrahedron method
Description: Number of Gauss–Legendre integration points used to evaluate the Fermi–Dirac distribution and determine the Fermi level at finite temperature using the tetrahedron method only with {{TAGDEF|ISMEAR|−14 or -15}}.
Only relevant when {{TAG|ISMEAR}} = −15 or −14.
{{Available|6.5.0}}
{{Available|6.5.0}}


----
----


'''EFERMI_NEDOS''' sets the number of points in the Gauss–Legendre grid used to integrate the Fermi–Dirac distribution for determining the Fermi level.   
'''EFERMI_NEDOS''' sets the number of points in the Gauss–Legendre grid used to integrate the Fermi–Dirac distribution for determining the Fermi level within the [[Smearing_technique#Tetrahedron_methods| tetrahedron method]] when {{TAGDEF|ISMEAR|−14 or -15}}.   
Larger values improve accuracy, especially at low temperatures or with sharp DOS features, but also increase computational cost.   
Larger values improve accuracy, especially at low temperatures or with sharp features in the [[:Category:Density of states|electronic DOS]], but also increase computational cost.   
A brief convergence test is recommended.
A brief convergence test is recommended in case very accurate occupancies are required, e.g., in the context of [[Transport coefficients including electron-phonon scattering|transport calculations]].


==Implementation details==
==Implementation details==
Line 54: Line 53:
[[K-point integration]]
[[K-point integration]]


<!--[[Category:INCAR tag]]
[[Category:INCAR tag]]
[[Category:Electronic occupancy]]
[[Category:Electronic occupancy]]
[[Category:Electronic minimization]]
[[Category:Density of states]]
[[Category:Density of states]]-->

Latest revision as of 12:07, 15 October 2025

EFERMI_NEDOS = [integer]
Default: EFERMI_NEDOS = 21 

Description: Number of Gauss–Legendre integration points used to evaluate the Fermi–Dirac distribution and determine the Fermi level at finite temperature using the tetrahedron method only with ISMEAR = −14 or -15 .

Mind: Available as of VASP 6.5.0

EFERMI_NEDOS sets the number of points in the Gauss–Legendre grid used to integrate the Fermi–Dirac distribution for determining the Fermi level within the tetrahedron method when ISMEAR = −14 or -15 . Larger values improve accuracy, especially at low temperatures or with sharp features in the electronic DOS, but also increase computational cost. A brief convergence test is recommended in case very accurate occupancies are required, e.g., in the context of transport calculations.

Implementation details

At [math]\displaystyle{ T=0 }[/math], the integrated and differential densities of states are $$ n(\epsilon)=\sum_{n\mathbf{k}}\theta(\epsilon-\epsilon_{n\mathbf{k}}), \qquad g(\epsilon)=\sum_{n\mathbf{k}}\delta(\epsilon-\epsilon_{n\mathbf{k}}). $$

At finite temperature, $$ N_e(\epsilon_F,T)= \sum_{n\mathbf{k}}f(\epsilon_{n\mathbf{k}}-\epsilon_F,T) =\int g(\epsilon)f(\epsilon-\epsilon_F,T)\,d\epsilon. \tag{1} $$

With the substitution [math]\displaystyle{ x = 1 - 2f(\epsilon-\epsilon_F,T) }[/math], $$ \epsilon = k_BT\ln\!\frac{1+x}{1-x}+\epsilon_F, \qquad d\epsilon = -k_BT\,\frac{2}{x^2-1}\,dx, $$ Eq. (1) becomes $$ N_e(\epsilon_F,T)= \frac{1}{2}\int_{-1}^{1} n\!\left(k_BT\ln\!\frac{1+x}{1-x}+\epsilon_F\right)\,dx. $$

In practice, this integral is discretized as $$ N_e(\epsilon_F,T)\simeq \frac{1}{2}\sum_{i=1}^{N}w_i\, n\!\left(k_BT\ln\!\frac{1+x_i}{1-x_i}+\epsilon_F\right), $$ where [math]\displaystyle{ w_i }[/math] and [math]\displaystyle{ x_i }[/math] are Gauss–Legendre weights and abscissas. The step functions \(\theta(\epsilon-\epsilon_{n\mathbf{k}})\) entering \(n(\epsilon)\) are evaluated using the tetrahedron method, with the number of energy points [math]\displaystyle{ N }[/math] given by EFERMI_NEDOS.

Related tags and articles

ISMEAR, SIGMA, Smearing technique, K-point integration