Slow-growth approach: Difference between revisions
No edit summary |
|||
| (12 intermediate revisions by 4 users not shown) | |||
| Line 8: | Line 8: | ||
can be computed as: | can be computed as: | ||
<math> | ::<math> | ||
w^{irrev}_{1 \rightarrow 2}=\int_{{\xi(1)}}^{{\xi(2)}} \left ( \frac{\partial {V(q)}} {\partial \xi} \right ) \cdot \dot{\xi}\, dt. | w^{irrev}_{1 \rightarrow 2}=\int_{{\xi(1)}}^{{\xi(2)}} \left ( \frac{\partial {V(q)}} {\partial \xi} \right ) \cdot \dot{\xi}\, dt. | ||
</math> | </math> | ||
| Line 14: | Line 14: | ||
In the limit of infinitesimally small <math>\dot{\xi}</math>, the work <math>w^{irrev}_{1 \rightarrow 2}</math> | In the limit of infinitesimally small <math>\dot{\xi}</math>, the work <math>w^{irrev}_{1 \rightarrow 2}</math> | ||
corresponds to the free-energy difference between the the final and initial state. | corresponds to the free-energy difference between the the final and initial state. | ||
In the general case, <math>w^{irrev}_{1 \rightarrow 2} | In the general case, <math>w^{irrev}_{1 \rightarrow 2}</math> is the irreversible work related | ||
to the free energy via Jarzynski's identity<ref name="jarzynski1997"/>: | to the free energy via Jarzynski's identity<ref name="jarzynski1997"/>: | ||
<math> | ::<math> | ||
exp^{-\frac{\Delta A_{1 \rightarrow 2}}{k_B\,T}}= | |||
\bigg \langle | \bigg \langle exp^{-\frac{w^{irrev}_{1 \rightarrow 2}}{k_B\,T}} \bigg\rangle. | ||
</math> | </math> | ||
| Line 29: | Line 29: | ||
can be found in reference <ref name="oberhofer2005"/>. | can be found in reference <ref name="oberhofer2005"/>. | ||
* For a | == How to == | ||
* For a slow-growth simulation, one has to perform a calcualtion very similar to [[Constrained molecular dynamics]] but additionally the transformation velocity-related {{TAG|INCREM}} tag for each geometric parameter with <tt>STATUS=0</tt> has to be specified: | |||
#Set the standard MD-related tags: {{TAG|IBRION}}=0, {{TAG|TEBEG}}, {{TAG|POTIM}}, and {{TAG|NSW}} | #Set the standard MD-related tags: {{TAG|IBRION}}=0, {{TAG|TEBEG}}, {{TAG|POTIM}}, and {{TAG|NSW}} | ||
#Set {{TAG|MDALGO}}=1, and choose an appropriate setting for {{TAG|ANDERSEN_PROB}} | #Choose a thermostat: | ||
#Define geometric constraints in the {{FILE|ICONST}} | ## Set {{TAG|MDALGO}}=1, and choose an appropriate setting for {{TAG|ANDERSEN_PROB}} | ||
## Set {{TAG|MDALGO}}=2, and choose an appropriate setting for {{TAG|SMASS}} | |||
#Define geometric constraints in the {{FILE|ICONST}} file, and set the STATUS parameter for the constrained coordinates to 0 | |||
#When the free-energy gradient is to be computed, set {{TAG|LBLUEOUT}}=.TRUE. | #When the free-energy gradient is to be computed, set {{TAG|LBLUEOUT}}=.TRUE. | ||
<ol start="5"> | <ol start="5"> | ||
<li> | <li>Specify the transformation velocity-related {{TAG|INCREM}}-tag for each geometric parameter with <tt>STATUS=0</tt>.</li> | ||
</ol> | </ol> | ||
| Line 49: | Line 50: | ||
</references> | </references> | ||
---- | ---- | ||
[[Category: | [[Category:Advanced molecular-dynamics sampling]][[Category:Theory]] | ||
Latest revision as of 13:10, 21 October 2025
The free-energy profile along a geometric parameter [math]\displaystyle{ \xi }[/math] can be scanned by an approximate slow-growth approach[1]. In this method, the value of [math]\displaystyle{ \xi }[/math] is linearly changed from the value characteristic for the initial state (1) to that for the final state (2) with a velocity of transformation [math]\displaystyle{ \dot{\xi} }[/math]. The resulting work needed to perform a transformation [math]\displaystyle{ 1 \rightarrow 2 }[/math] can be computed as:
- [math]\displaystyle{ w^{irrev}_{1 \rightarrow 2}=\int_{{\xi(1)}}^{{\xi(2)}} \left ( \frac{\partial {V(q)}} {\partial \xi} \right ) \cdot \dot{\xi}\, dt. }[/math]
In the limit of infinitesimally small [math]\displaystyle{ \dot{\xi} }[/math], the work [math]\displaystyle{ w^{irrev}_{1 \rightarrow 2} }[/math] corresponds to the free-energy difference between the the final and initial state. In the general case, [math]\displaystyle{ w^{irrev}_{1 \rightarrow 2} }[/math] is the irreversible work related to the free energy via Jarzynski's identity[2]:
- [math]\displaystyle{ exp^{-\frac{\Delta A_{1 \rightarrow 2}}{k_B\,T}}= \bigg \langle exp^{-\frac{w^{irrev}_{1 \rightarrow 2}}{k_B\,T}} \bigg\rangle. }[/math]
Note that calculation of the free-energy via this equation requires averaging of the term [math]\displaystyle{ {\rm exp} \left \{-\frac{w^{irrev}_{1 \rightarrow 2}}{k_B\,T} \right \} }[/math] over many realizations of the [math]\displaystyle{ 1 \rightarrow 2 }[/math] transformation. Detailed description of the simulation protocol that employs Jarzynski's identity can be found in reference [3].
How to
- For a slow-growth simulation, one has to perform a calcualtion very similar to Constrained molecular dynamics but additionally the transformation velocity-related INCREM tag for each geometric parameter with STATUS=0 has to be specified:
- Set the standard MD-related tags: IBRION=0, TEBEG, POTIM, and NSW
- Choose a thermostat:
- Set MDALGO=1, and choose an appropriate setting for ANDERSEN_PROB
- Set MDALGO=2, and choose an appropriate setting for SMASS
- Define geometric constraints in the ICONST file, and set the STATUS parameter for the constrained coordinates to 0
- When the free-energy gradient is to be computed, set LBLUEOUT=.TRUE.
- Specify the transformation velocity-related INCREM-tag for each geometric parameter with STATUS=0.