ESTOP: Difference between revisions

From VASP Wiki
(Created page with "{{TAGDEF|ESTOP|[real]}} {{DEF|ESTOP|0.05| }} Description: {{TAG|ESTOP}} specifies the stop condition for stochastic MP2.{{cite|Schaefer:JCP2017}} ---- {{TAGBL|ESTOP}} define...")
 
No edit summary
Line 21: Line 21:
See [[Stochastic_LTMP2|this tutorial]] for more Information about Laplace transformed MP2.
See [[Stochastic_LTMP2|this tutorial]] for more Information about Laplace transformed MP2.


== Related Tags and Sections ==
== Related tags and articles ==
{{TAG|ALGO}},
{{TAG|ALGO}},
{{TAG|LMP2LT}},
{{TAG|LMP2LT}},
Line 29: Line 29:


----
----
[[The_VASP_Manual|Contents]]


[[Category:INCAR]][[Category:MP2]][[Category:VASP6]]
[[Category:INCAR tag]][[Category:MP2]][[Category:VASP6]]

Revision as of 14:13, 8 April 2022

ESTOP = [real] 

Default: ESTOP = 0.05

Description: ESTOP specifies the stop condition for stochastic MP2.


ESTOP defines the energy accuracy in units of eV for each individual tau-point of the two individual MP2 energy contributions (direct MP2 term + exchange MP2 term). Since the statistical errors of each contribution is independent, the standard deviation of the MP2 energy can be estimated as

[math]\displaystyle{ \sigma = \texttt{ESTOP} * \sqrt{2 \cdot \texttt{NOMEGA}} \;. }[/math]

According to our experience, the error of the resulting MP2 energy can then be safely estimated by [math]\displaystyle{ \pm 2 \sigma }[/math].

Thus, if you require an MP2 energy with a maximum error of [math]\displaystyle{ \Delta }[/math], you should set

[math]\displaystyle{ \texttt{ESTOP} = \frac{\Delta}{2 \cdot \sqrt{2 \cdot \texttt{NOMEGA}}} \;. }[/math]

See this tutorial for more Information about Laplace transformed MP2.

Related tags and articles

ALGO, LMP2LT, LSMP2LT, NOMEGA, NSTORB