ML LHEAT: Difference between revisions

From VASP Wiki
m (Karsai moved page ML FF LHEAT MB to ML LHEAT)
No edit summary
Line 1: Line 1:
{{TAGDEF|ML_FF_LHEAT_MB|[logical]|.FALSE.}}
{{TAGDEF|ML_LHEAT|[logical]|.FALSE.}}


Description: This flag specifies whether the heat flux is calculated or not in the machine learning force field method.
Description: This flag specifies whether the heat flux is calculated or not in the machine learning force field method.
Line 45: Line 45:


== Related Tags and Sections ==
== Related Tags and Sections ==
{{TAG|ML_FF_LMLFF}}, {{TAG|ML_FF_LEATOM_MB}}
{{TAG|ML_LMLFF}}, {{TAG|ML_LEATOM}}


{{sc|ML_FF_LHEAT_MB|Examples|Examples that use this tag}}
{{sc|ML_LHEAT|Examples|Examples that use this tag}}
----
----


[[Category:INCAR]][[Category:Machine Learning]][[Category:Machine Learned Force Fields]][[Category: Alpha]]
[[Category:INCAR]][[Category:Machine Learning]][[Category:Machine Learned Force Fields]][[Category: Alpha]]

Revision as of 08:55, 23 August 2021

ML_LHEAT = [logical]
Default: ML_LHEAT = .FALSE. 

Description: This flag specifies whether the heat flux is calculated or not in the machine learning force field method.


The heat flux within machine learning force fields can is decomposed into atomic contributions written as

[math]\displaystyle{ \mathbf{q}(t) = \sum\limits_{i=1}^{N_{a}} \frac{d}{dt} \left( \mathbf{r}_{i} E_{i} \right), }[/math]

[math]\displaystyle{ E_{i}=\frac{m_{i} \left|\mathbf{v}_{i} \right|^{2}}{2} + U_{i} }[/math]

where [math]\displaystyle{ \mathbf{r}_{i} }[/math], [math]\displaystyle{ \mathbf{v}_{i} }[/math] and [math]\displaystyle{ E_{i} }[/math] denote the position vector, velocity and energy of atom [math]\displaystyle{ i }[/math], respectively. The number of atoms in the system is denoted by [math]\displaystyle{ N_{a} }[/math]. The heat flux can be further rewritten as

[math]\displaystyle{ \mathbf{q}(t) = \sum\limits_{i=1}^{N_{a}} \mathbf{v}_{i} E_{i} + \sum\limits_{i=1}^{N_{a}} \mathbf{r}_{i} \left( m_{i} \mathbf{v}_{i} \cdot \frac{d\mathbf{v}_{i}}{dt} + \sum\limits_{j=1}^{N_{a}} \mathbf{v}_{j} \cdot \nabla_{j} U_{i} \right). }[/math]

Using the equation of motions

[math]\displaystyle{ m_{i} \frac{d \mathbf{v}_{i}}{dt} = - \sum\limits_{j=1}^{N_{a}} \nabla_{i} U_{j} }[/math]

the heat flux can be simplified to

[math]\displaystyle{ \mathbf{q}(t) = \sum\limits_{i=1}^{N_{a}} \mathbf{v}_{i} E_{i} - \sum\limits_{i=1}^{N_{a}} \sum\limits_{j=1}^{N_{a}} \mathbf{r}_{i} \left( \mathbf{v}_{i} \cdot \nabla_{i} U_{j} \right) + \sum\limits_{i=1}^{N_{a}} \sum\limits_{j=1}^{N_{a}} \mathbf{r}_{i} \left( \mathbf{v}_{j} \cdot \nabla_{j} U_{i} \right) = \sum\limits_{i=1}^{N_{a}} \mathbf{v}_{i} E_{i} + \sum\limits_{i=1}^{N_{a}} \sum\limits_{j=1}^{N_{a}} \left( \mathbf{r}_{i} - \mathbf{r}_{j} \right) \left( \mathbf{v}_{j} \cdot \nabla_{j} U_{i} \right). }[/math]

Finally (in a post-processing step), the thermal conductivity at temperature [math]\displaystyle{ T }[/math] in the Green-Kubo formalism can be calculated from the correlation of the heat flux [math]\displaystyle{ \mathbf{q} }[/math] as

[math]\displaystyle{ \kappa = \frac{1}{3Vk_{b}T^{2}} \int\limits_{0}^{\infty} \langle \mathbf{q}(t) \cdot \mathbf{q}(0) \rangle dt, }[/math]


where [math]\displaystyle{ V }[/math] and [math]\displaystyle{ k_{b} }[/math] denotes the volume of the system and the Boltzmann constant, respectively.


The heat flux is written to the file ML_HEAT.

Related Tags and Sections

ML_LMLFF, ML_LEATOM

Examples that use this tag