ML SION1: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 1: Line 1:
{{TAGDEF|ML_SION1|[real]|0.5}}
{{TAGDEF|ML_SION1|[real]|0.5}}


Description: This tag specifies the width <math>\sigma_\text{atom}</math> of the Gaussian functions used for broadening the atomic distributions for the radial descriptor <math>\rho^{(2)}_i(r)</math> within the machine learning force field method (see [[Machine learning force field: Theory#Descriptors|this section]]).
Description: This tag specifies the width <math>\sigma_\text{atom}</math> of the Gaussian functions used for broadening the atomic distributions of the radial descriptor <math>\rho^{(2)}_i(r)</math> within the machine learning force field method (see [[Machine learning force field: Theory#Descriptors|this section]]).
----
----



Revision as of 20:38, 10 October 2021

ML_SION1 = [real]
Default: ML_SION1 = 0.5 

Description: This tag specifies the width [math]\displaystyle{ \sigma_\text{atom} }[/math] of the Gaussian functions used for broadening the atomic distributions of the radial descriptor [math]\displaystyle{ \rho^{(2)}_i(r) }[/math] within the machine learning force field method (see this section).


The unit of ML_SION1 is [math]\displaystyle{ \AA }[/math].

Our test calculations indicate that ML_SION1 = ML_SION2 results in an optimal training performance. Furthermore, a value of 0.5 was found to be a good default value for both. However, the best choice is system-dependent, careful testing may improve machine learning results.

Related Tags and Sections

ML_LMLFF, ML_SION2, ML_RCUT1, ML_RCUT2, ML_MRB1, ML_MRB2

Examples that use this tag