Interface pinning calculations: Difference between revisions

From VASP Wiki
(Redirected page to Category:Interface pinning)
(Removed redirect to Category:Interface pinning)
Tag: Removed redirect
Line 1: Line 1:
#REDIRECT [[Category:Interface pinning]]
'''Interface pinning'''{{cite|pedersen:prb:13}} is used to determine the melting point from a [[:Category: Molecular dynamics|molecular-dynamics]] simulation of the interface between a liquid and a solid phase.
<!-- == Theory == -->
The typical behavior of such a simulation is to freeze or melt, while the interface is ''pinned'' with a bias potential.
This potential applies an energy penalty for deviations from the desired two-phase system.
It is preferred simulating above the melting point because the bias potential prevents melting better than freezing.
 
The Steinhardt-Nelson{{cite|steinhardt:prb:83}} order parameter <math>Q_6</math> discriminates between the solid and the liquid phase.
With the bias potential
 
:<math>U_\text{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - A\right)^2 </math>
 
penalizes differences between the order parameter for the current configuration <math>Q_6({\mathbf{R}})</math> and the one for the desired interface <math>A</math>.
<math>\kappa</math> is an adjustable parameter determining the strength of the pinning.
 
Under the action of the bias potential, the system equilibrates to the desired two-phase configuration.
An important observable is the difference between the average order parameter <math>\langle Q_6\rangle</math> in equilibrium and the desired order parameter <math>A</math>.
This difference relates to the the chemical potentials of the solid <math>\mu_\text{solid}</math> and the liquid <math>\mu_\text{liquid}</math> phase
 
:<math>
N(\mu_\text{solid} - \mu_\text{liquid}) =
\kappa (Q_{6,\text{solid}} - Q_{6,\text{liquid}})(\langle Q_6 \rangle - A)
</math>
 
where <math>N</math> is the number of atoms in the simulation.
 
Computing the forces requires a differentiable <math>Q_6(\mathbf{R})</math>.
<!-- PLEASE REPHRASE - I did not understand this part and how it relates to Q_6(R) -->
In the VASP implementation a smooth fading function <math>w(r)</math> is used to weight each pair of atoms at distance <math>r</math> for the calculation of the <math>Q_6(\mathbf{R},w)</math> order parameter. This fading function is given as
 
:<math> w(r) = \left\{ \begin{array}{cl} 1  &\textrm{for} \,\, r\leq n \\
                      \frac{(f^2 - r^2)^2 (f^2 - 3n^2 + 2r^2)}{(f^2 - n^2)^3}  &\textrm{for} \,\, n<r<f \\
                      0  &\textrm{for} \,\,f\leq r \end{array}\right. </math>
 
<!-- is w(r) equivalent to (1 - t)^2(1 + 2t) with t = (r - n) / (f - n)? -->
 
Here <math>n</math> and <math>f</math> are the near- and far-fading distances, respectively.
<!-- END REPHRASE -->
The radial distribution function <math>g(r)</math> of the crystal phase yields a good choice for the fading range.
To prevent spurious stress, <math>g(r)</math> should be small where the derivative of <math>w(r)</math> is large.
Set the near fading distance <math>n</math> to the distance where <math>g(r)</math> goes below 1 after the first peak.
Set the far fading distance <math>f</math> to the distance where <math>g(r)</math> goes above 1 again before the second peak.
 
== References ==
<references/>
 
<noinclude>
 
----
 
[[Category:VASP|Interface pinning]][[Category:Molecular dynamics]]

Revision as of 11:46, 16 October 2024

Interface pinning[1] is used to determine the melting point from a molecular-dynamics simulation of the interface between a liquid and a solid phase. The typical behavior of such a simulation is to freeze or melt, while the interface is pinned with a bias potential. This potential applies an energy penalty for deviations from the desired two-phase system. It is preferred simulating above the melting point because the bias potential prevents melting better than freezing.

The Steinhardt-Nelson[2] order parameter [math]\displaystyle{ Q_6 }[/math] discriminates between the solid and the liquid phase. With the bias potential

[math]\displaystyle{ U_\text{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - A\right)^2 }[/math]

penalizes differences between the order parameter for the current configuration [math]\displaystyle{ Q_6({\mathbf{R}}) }[/math] and the one for the desired interface [math]\displaystyle{ A }[/math]. [math]\displaystyle{ \kappa }[/math] is an adjustable parameter determining the strength of the pinning.

Under the action of the bias potential, the system equilibrates to the desired two-phase configuration. An important observable is the difference between the average order parameter [math]\displaystyle{ \langle Q_6\rangle }[/math] in equilibrium and the desired order parameter [math]\displaystyle{ A }[/math]. This difference relates to the the chemical potentials of the solid [math]\displaystyle{ \mu_\text{solid} }[/math] and the liquid [math]\displaystyle{ \mu_\text{liquid} }[/math] phase

[math]\displaystyle{ N(\mu_\text{solid} - \mu_\text{liquid}) = \kappa (Q_{6,\text{solid}} - Q_{6,\text{liquid}})(\langle Q_6 \rangle - A) }[/math]

where [math]\displaystyle{ N }[/math] is the number of atoms in the simulation.

Computing the forces requires a differentiable [math]\displaystyle{ Q_6(\mathbf{R}) }[/math]. In the VASP implementation a smooth fading function [math]\displaystyle{ w(r) }[/math] is used to weight each pair of atoms at distance [math]\displaystyle{ r }[/math] for the calculation of the [math]\displaystyle{ Q_6(\mathbf{R},w) }[/math] order parameter. This fading function is given as

[math]\displaystyle{ w(r) = \left\{ \begin{array}{cl} 1 &\textrm{for} \,\, r\leq n \\ \frac{(f^2 - r^2)^2 (f^2 - 3n^2 + 2r^2)}{(f^2 - n^2)^3} &\textrm{for} \,\, n\lt r\lt f \\ 0 &\textrm{for} \,\,f\leq r \end{array}\right. }[/math]


Here [math]\displaystyle{ n }[/math] and [math]\displaystyle{ f }[/math] are the near- and far-fading distances, respectively. The radial distribution function [math]\displaystyle{ g(r) }[/math] of the crystal phase yields a good choice for the fading range. To prevent spurious stress, [math]\displaystyle{ g(r) }[/math] should be small where the derivative of [math]\displaystyle{ w(r) }[/math] is large. Set the near fading distance [math]\displaystyle{ n }[/math] to the distance where [math]\displaystyle{ g(r) }[/math] goes below 1 after the first peak. Set the far fading distance [math]\displaystyle{ f }[/math] to the distance where [math]\displaystyle{ g(r) }[/math] goes above 1 again before the second peak.

References