Interface pinning calculations: Difference between revisions
(Redirected page to Category:Interface pinning) Tags: New redirect Visual edit: Switched |
(Removed redirect to Category:Interface pinning) Tag: Removed redirect |
||
Line 1: | Line 1: | ||
'''Interface pinning'''{{cite|pedersen:prb:13}} is used to determine the melting point from a [[:Category: Molecular dynamics|molecular-dynamics]] simulation of the interface between a liquid and a solid phase. | |||
<!-- == Theory == --> | |||
The typical behavior of such a simulation is to freeze or melt, while the interface is ''pinned'' with a bias potential. | |||
This potential applies an energy penalty for deviations from the desired two-phase system. | |||
It is preferred simulating above the melting point because the bias potential prevents melting better than freezing. | |||
The Steinhardt-Nelson{{cite|steinhardt:prb:83}} order parameter <math>Q_6</math> discriminates between the solid and the liquid phase. | |||
With the bias potential | |||
:<math>U_\text{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - A\right)^2 </math> | |||
penalizes differences between the order parameter for the current configuration <math>Q_6({\mathbf{R}})</math> and the one for the desired interface <math>A</math>. | |||
<math>\kappa</math> is an adjustable parameter determining the strength of the pinning. | |||
Under the action of the bias potential, the system equilibrates to the desired two-phase configuration. | |||
An important observable is the difference between the average order parameter <math>\langle Q_6\rangle</math> in equilibrium and the desired order parameter <math>A</math>. | |||
This difference relates to the the chemical potentials of the solid <math>\mu_\text{solid}</math> and the liquid <math>\mu_\text{liquid}</math> phase | |||
:<math> | |||
N(\mu_\text{solid} - \mu_\text{liquid}) = | |||
\kappa (Q_{6,\text{solid}} - Q_{6,\text{liquid}})(\langle Q_6 \rangle - A) | |||
</math> | |||
where <math>N</math> is the number of atoms in the simulation. | |||
Computing the forces requires a differentiable <math>Q_6(\mathbf{R})</math>. | |||
<!-- PLEASE REPHRASE - I did not understand this part and how it relates to Q_6(R) --> | |||
In the VASP implementation a smooth fading function <math>w(r)</math> is used to weight each pair of atoms at distance <math>r</math> for the calculation of the <math>Q_6(\mathbf{R},w)</math> order parameter. This fading function is given as | |||
:<math> w(r) = \left\{ \begin{array}{cl} 1 &\textrm{for} \,\, r\leq n \\ | |||
\frac{(f^2 - r^2)^2 (f^2 - 3n^2 + 2r^2)}{(f^2 - n^2)^3} &\textrm{for} \,\, n<r<f \\ | |||
0 &\textrm{for} \,\,f\leq r \end{array}\right. </math> | |||
<!-- is w(r) equivalent to (1 - t)^2(1 + 2t) with t = (r - n) / (f - n)? --> | |||
Here <math>n</math> and <math>f</math> are the near- and far-fading distances, respectively. | |||
<!-- END REPHRASE --> | |||
The radial distribution function <math>g(r)</math> of the crystal phase yields a good choice for the fading range. | |||
To prevent spurious stress, <math>g(r)</math> should be small where the derivative of <math>w(r)</math> is large. | |||
Set the near fading distance <math>n</math> to the distance where <math>g(r)</math> goes below 1 after the first peak. | |||
Set the far fading distance <math>f</math> to the distance where <math>g(r)</math> goes above 1 again before the second peak. | |||
== References == | |||
<references/> | |||
<noinclude> | |||
---- | |||
[[Category:VASP|Interface pinning]][[Category:Molecular dynamics]] |
Revision as of 11:46, 16 October 2024
Interface pinning[1] is used to determine the melting point from a molecular-dynamics simulation of the interface between a liquid and a solid phase. The typical behavior of such a simulation is to freeze or melt, while the interface is pinned with a bias potential. This potential applies an energy penalty for deviations from the desired two-phase system. It is preferred simulating above the melting point because the bias potential prevents melting better than freezing.
The Steinhardt-Nelson[2] order parameter [math]\displaystyle{ Q_6 }[/math] discriminates between the solid and the liquid phase. With the bias potential
- [math]\displaystyle{ U_\text{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - A\right)^2 }[/math]
penalizes differences between the order parameter for the current configuration [math]\displaystyle{ Q_6({\mathbf{R}}) }[/math] and the one for the desired interface [math]\displaystyle{ A }[/math]. [math]\displaystyle{ \kappa }[/math] is an adjustable parameter determining the strength of the pinning.
Under the action of the bias potential, the system equilibrates to the desired two-phase configuration. An important observable is the difference between the average order parameter [math]\displaystyle{ \langle Q_6\rangle }[/math] in equilibrium and the desired order parameter [math]\displaystyle{ A }[/math]. This difference relates to the the chemical potentials of the solid [math]\displaystyle{ \mu_\text{solid} }[/math] and the liquid [math]\displaystyle{ \mu_\text{liquid} }[/math] phase
- [math]\displaystyle{ N(\mu_\text{solid} - \mu_\text{liquid}) = \kappa (Q_{6,\text{solid}} - Q_{6,\text{liquid}})(\langle Q_6 \rangle - A) }[/math]
where [math]\displaystyle{ N }[/math] is the number of atoms in the simulation.
Computing the forces requires a differentiable [math]\displaystyle{ Q_6(\mathbf{R}) }[/math]. In the VASP implementation a smooth fading function [math]\displaystyle{ w(r) }[/math] is used to weight each pair of atoms at distance [math]\displaystyle{ r }[/math] for the calculation of the [math]\displaystyle{ Q_6(\mathbf{R},w) }[/math] order parameter. This fading function is given as
- [math]\displaystyle{ w(r) = \left\{ \begin{array}{cl} 1 &\textrm{for} \,\, r\leq n \\ \frac{(f^2 - r^2)^2 (f^2 - 3n^2 + 2r^2)}{(f^2 - n^2)^3} &\textrm{for} \,\, n\lt r\lt f \\ 0 &\textrm{for} \,\,f\leq r \end{array}\right. }[/math]
Here [math]\displaystyle{ n }[/math] and [math]\displaystyle{ f }[/math] are the near- and far-fading distances, respectively.
The radial distribution function [math]\displaystyle{ g(r) }[/math] of the crystal phase yields a good choice for the fading range.
To prevent spurious stress, [math]\displaystyle{ g(r) }[/math] should be small where the derivative of [math]\displaystyle{ w(r) }[/math] is large.
Set the near fading distance [math]\displaystyle{ n }[/math] to the distance where [math]\displaystyle{ g(r) }[/math] goes below 1 after the first peak.
Set the far fading distance [math]\displaystyle{ f }[/math] to the distance where [math]\displaystyle{ g(r) }[/math] goes above 1 again before the second peak.
References