Phonons from density-functional-perturbation theory
In density functional theory we solve the Hamiltonian
- [math]\displaystyle{ H(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle= e_{n\mathbf{k}}S(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle }[/math]
Taking derivatives with respect to a perturbation [math]\displaystyle{ \lambda }[/math] we obtain the Sternheimer equation
- [math]\displaystyle{ \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k}) \right] | \partial_\lambda\psi_{n\mathbf{k}} \rangle = -\partial_\lambda \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k})\right] | \psi_{n\mathbf{k}} \rangle }[/math]
Once the derivative of the orbitals is computed from the Sternheimer equation we can write
- [math]\displaystyle{ | \psi^{R^a_i}_\lambda \rangle = | \psi \rangle + \lambda | \partial_{R^a_i}\psi \rangle }[/math]
The force constants are then computed using
- [math]\displaystyle{ \Phi^{ab}_{ij}= \frac{\partial^2E}{\partial R^a_i \partial R^b_j}= -\frac{\partial F^a_i}{\partial R^b_j} \approx -\frac{ \left( \mathbf{F}[\{\psi^{R^b_j}_{\lambda/2}\}]- \mathbf{F}[\{\psi^{R^b_j}_{-\lambda/2}\}] \right)^a_i}{\lambda} }[/math]
where [math]\displaystyle{ \mathbf{F} }[/math] yields the forces for a given set of orbitals.
At the end of the calculation if LEPSILON=.TRUE., the Born effective charges are computed using Eq. (42) of Ref. [1].
- [math]\displaystyle{ Z^{a*}_{ij} = 2 \frac{\Omega_0}{(2\pi)^3} \int_\text{BZ} \sum_n \langle \partial_{R^a_i}\psi_{n\mathbf{k}} | \nabla_{\mathbf{k}} \tilde{u}_{n\mathbf{k}} \rangle d\mathbf{k} }[/math]
where [math]\displaystyle{ a }[/math] is the atom index, [math]\displaystyle{ i }[/math] the direction of the displacement of atom and [math]\displaystyle{ j }[/math] the polarization direction. The results should be equivalent to the ones obtained using LCALCEPS and LEPSILON.
When IBRION=7 or 8 VASP solves the Sternheimer equation above with an ionic displacement perturbation. If IBRION=7 no symmetry is used and the displacement of all the ions is computed. When IBRION=8 only the irreducible displacements are computed with the physical quantities being reconstructed by symmetry.