Phonons from density-functional-perturbation theory
Density-functional-perturbation theory provides a way to compute the second-order linear response to ionic displacement, strain, and electric fields. The equations are derived as follows.
In density-functional theory, we solve the Kohn-Sham (KS) equations
- [math]\displaystyle{ H(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle= e_{n\mathbf{k}}S(\mathbf{k}) | \psi_{n\mathbf{k}} \rangle, }[/math]
where ...
Taking the derivative with respect to the ionic positions [math]\displaystyle{ R_i^a }[/math], we obtain the Sternheimer equations
- [math]\displaystyle{ \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k}) \right] | \partial_{u_i^a}\psi_{n\mathbf{k}} \rangle = -\partial_{u_i^a} \left[ H(\mathbf{k}) - e_{n\mathbf{k}}S(\mathbf{k})\right] | \psi_{n\mathbf{k}} \rangle }[/math]
Once the derivative of the KS orbitals is computed from the Sternheimer equations, we can write
- [math]\displaystyle{ | \psi^{u^a_i}_\lambda \rangle = | \psi \rangle + \lambda | \partial_{u^a_i}\psi \rangle. }[/math]
The second-order response to ionic displacement, i.e., the force constants or Hessian matrix, are then computed using
- [math]\displaystyle{ \Phi^{ab}_{ij}= \frac{\partial^2E}{\partial u^a_i \partial u^b_j}= -\frac{\partial F^a_i}{\partial u^b_j} \approx -\frac{ \left( \mathbf{F}[\{\psi^{u^b_j}_{\lambda/2}\}]- \mathbf{F}[\{\psi^{u^b_j}_{-\lambda/2}\}] \right)^a_i}{\lambda}, }[/math]
where [math]\displaystyle{ \mathbf{F} }[/math] yields the forces for a given set of KS orbitals.
The internal strain tensor is computed using
- [math]\displaystyle{ \Xi^a_{il}=\frac{\partial^2 E}{\partial \eta^a_i \partial u^b_j}= \frac{\partial \sigma_l}{\partial u^a_i} \approx \frac{ \left( \sigma[\{\psi^{u^a_i}_{\lambda/2}\}]- \sigma[\{\psi^{u^a_i}_{-\lambda/2}\}] \right)_l }{\lambda}. }[/math]