Bandstructure of SrVO3 in GW: Difference between revisions

From VASP Wiki
No edit summary
Line 73: Line 73:
KPAR = 3
KPAR = 3
</pre>
</pre>
Copy the aforementioned file to {{TAG|INCAR}}:
cp INCAR.DFT.all INCAR


== The GW calculation ==
== The GW calculation ==
*INCAR.GW0
<pre>
System  = SrVO3
ISMEAR = -5
EMIN = -20 ; EMAX = 20 ; NEDOS = 1000  # usefull energy range for density of states
NBANDS = 96                            # need for a lot of bands in GW
ALGO = GW0                            #
NELM = 1                              # one step so this is really G0W0
PRECFOCK = Fast                        # select fast mode for FFT's
ENCUTGW = 100                          # energy cutoff for response function
NOMEGA = 200                          # metal, we need a lot of frequency points
MAXMEM = 2500                          # memory per core
NKRED = 2                              # sample down the GW to a coarse 2x2x2 grid
KPAR = 3
</pre>


=== Analysis of the DOS ===
=== Analysis of the DOS ===

Revision as of 10:15, 12 September 2012

Description: the GW bandstructure of SrVO3 using VASP and WANNIER90.


Performing a GW calculation with VASP is a 3-step procedure: a DFT groundstate calculation, a calculation to obtain a number of virtual orbitals, and the actual GW calculation itself. In this example we will also see how the results of the GW calculation may be postprocessed with WANNIER90 to obtain the dispersion of the bands along the usual high symmetry directions in reciprocal space.

The DFT groundstate calculation

Everthing starts with a conventional DFT (in this LDA) groundstate calculation:

  • INCAR.DFT
System  = SrVO3

ISMEAR = -5
EMIN = -20 ; EMAX = 20 ; NEDOS = 1000  # usefull energy range for density of states

EDIFF = 1E-8                           # high precision for groundstate calculation

KPAR = 3

Copy the aforementioned file to INCAR:

cp INCAR.DFT INCAR
  • KPOINTS
Automatically generated mesh
       0
Gamma
 4 4 4

Mind: this is definitely not dense enough for a high-quality description of SrVO3, but in the interest of speed we will live with it.

  • POSCAR
SrVO3
3.77706  #taken from 9x9x9 with sigma=0.2 ismear=2
 +1.0000000000  +0.0000000000  +0.0000000000 
 +0.0000000000  +1.0000000000  +0.0000000000 
 +0.0000000000  +0.0000000000  +1.0000000000 
Sr V O
 1 1 3
Direct
 +0.0000000000  +0.0000000000  +0.0000000000 
 +0.5000000000  +0.5000000000  +0.5000000000 
 +0.5000000000  +0.5000000000  +0.0000000000 
 +0.5000000000  +0.0000000000  +0.5000000000 
 +0.0000000000  +0.5000000000  +0.5000000000

Analysis of the DOS

Bandstructure using WANNIER90

Obtain DFT virtual orbitals

  • INCAR.DFT.all
System  = SrVO3

ISMEAR = -5
EMIN = -20 ; EMAX = 20 ; NEDOS = 1000  # usefull energy range for density of states

ALGO = Exact  ; NELM = 1               # exact diagonalization one step suffices
EDIFF = 1E-8                           # high precision for groundstate calculation
NBANDS = 96                            # need for a lot of bands in GW
LOPTICS = .TRUE.                       # we need d phi/ d k  for GW calculations

KPAR = 3

Copy the aforementioned file to INCAR:

cp INCAR.DFT.all INCAR

The GW calculation

  • INCAR.GW0
System  = SrVO3

ISMEAR = -5
EMIN = -20 ; EMAX = 20 ; NEDOS = 1000  # usefull energy range for density of states

NBANDS = 96                            # need for a lot of bands in GW

ALGO = GW0                             # 
NELM = 1                               # one step so this is really G0W0
PRECFOCK = Fast                        # select fast mode for FFT's 
ENCUTGW = 100                          # energy cutoff for response function
NOMEGA = 200                           # metal, we need a lot of frequency points
MAXMEM = 2500                          # memory per core
NKRED = 2                              # sample down the GW to a coarse 2x2x2 grid

KPAR = 3

Analysis of the DOS

Bandstructure using WANNIER90

Download


To the list of examples or to the main page