GGA: Difference between revisions

From VASP Wiki
No edit summary
Line 53: Line 53:
|05  || range-separated ACFDT (LDA - sr RPA) <math>\mu=0.5 \AA^3</math>
|05  || range-separated ACFDT (LDA - sr RPA) <math>\mu=0.5 \AA^3</math>
|-
|-
|03 || range-separated ACFDT (LDA - sr RPA) <math>\mu=1.0 \AA^3</math>  
|10 || range-separated ACFDT (LDA - sr RPA) <math>\mu=1.0 \AA^3</math>  
|-
|-
|05 || range-separated ACFDT (LDA - sr RPA) <math>\mu=2.0 \AA^3</math>
|20 || range-separated ACFDT (LDA - sr RPA) <math>\mu=2.0 \AA^3</math>
|-
|-
|PL  || new RPA+ Perdew Wang (by Judith Harl)
|PL  || new RPA+ Perdew Wang (by Judith Harl)

Revision as of 10:29, 2 May 2017

GGA = 91 | PE | RP | PS | AM
Default: GGA = type of exchange-correlation in accordance with the POTCAR file 

Description: GGA specifies the type of generalized-gradient-approximation one wishes to use.


This tag was added to perform GGA calculation with pseudopotentials generated with conventional LDA reference configurations.

Possible options are:

GGA Description
91 Perdew - Wang 91[1]
PE Perdew-Burke-Ernzerhof[2]
AM AM05[3][4][5]
HL Hendin-Lundqvist[6]
CA Ceperley-Alder[7]
PZ Ceperley-Alder, parametrization of Perdew-Zunger[8]
WI Wigner[9]
RP revised Perdew-Burke-Ernzerhof (RPBE)[10] with Pade Approximation
VW Vosko-Wilk-Nusair[11] (VWN)
B3 B3LYP[12] (Joachim Paier), where LDA part is with VWN3-correlation
B5 B3LYP (Joachim Paier), where LDA part is with VWN5-correlation
BF BEEF[13], xc (with libbeef)
CO no exchange-correlation
PS Perdew-Burke-Ernzerhof revised for solids (PBEsol)[14]
for range-separated ACFDT:
RA new RPA Perdew Wang (by Judith Harl)
03 range-separated ACFDT (LDA - sr RPA)
05 range-separated ACFDT (LDA - sr RPA)
10 range-separated ACFDT (LDA - sr RPA)
20 range-separated ACFDT (LDA - sr RPA)
PL new RPA+ Perdew Wang (by Judith Harl)
for vdW (Jiri Klimes):
RE revPBE[15]
OR optPBE[16]
BO optB88[16]
MK optB86b[16]

The tags AM (AM05) and PS (PBEsol) are only supported by VASP.5.X. The AM05 functional and the PBEsol functional are constructed using different principles, but both aim at a decent description of yellium surface energies. In practice, they yield quite similar results for most materials. Both are available for spin polarized calculations.

Examples that use this tag

References


Contents