LCALCPOL

From VASP Wiki
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

LCALCPOL = .TRUE. | .FALSE.
Default: LCALCPOL = .FALSE. 

Description: LCALCPOL=.TRUE. switches on the evaluation of the Berry phase expressions for the macroscopic electronic polarization in accordance with the so-called Modern Theory of Polarization.


For LCALCPOL=.TRUE., VASP calculates the electronic contribution to the polarization, along the three reciprocal lattice vectors Gi, i=1,2,3, (i.e. Σi P·Gi) in a single run (unlike LBERRY=.TRUE.).

An example: The fluorine displacement dipole (Born effective charge) in NaF

PREC = Med
EDIFF= 1E-6

ISMEAR = 0
DIPOL  = 0.25 0.25 0.25

LCALCPOL = .TRUE.
6x6x6
 0
Gamma
 6 6 6
 0 0 0
NaF
 4.5102
 0.0 0.5 0.5
 0.5 0.0 0.5
 0.5 0.5 0.0
1 1
Direct
  0.0000000000000000  0.0000000000000000  0.0000000000000000
  0.5000000000000000  0.5000000000000000  0.5000000000000000
  • and LDA Na_sv and F PAW datasets.

The OUTCAR file should now contain the following lines:

            Ionic dipole moment: p[ion]=(     2.25510     2.25510     2.25510 ) electrons Angst

 Total electronic dipole moment: p[elc]=(     0.00000     0.00000     0.00000 ) electrons Angst

Here the units "electrons Angst" denote .

To calculate the change in the electronic polarization of NaF due to the displacement of the fluorine sublattice we repeat the previous calculation with the following POSCAR file:

NaF
 4.5102
 0.0 0.5 0.5
 0.5 0.0 0.5
 0.5 0.5 0.0
1 1
Direct
  0.0000000000000000  0.0000000000000000  0.0000000000000000
  0.5100000000000000  0.5100000000000000  0.4900000000000000

The OUTCAR should now contain something very similar to the following lines:

            Ionic dipole moment: p[ion]=(     2.25510     2.25510     1.93939 ) electrons Angst

 Total electronic dipole moment: p[elc]=(     0.00000     0.00000     0.36061 ) electrons Angst

From the above one easily recognizes that the change in the electronic dipole moment due to the F-sublattice displacement is:

and the corresponding change in the ionic dipole moment:

Thus the total change is found to be:

and considering that the F-sublattice was displaced by 0.045102 Å these calculations yield a Born effective charge for fluorine of

.

The socalled parallel or direction in the integration over the reciprocal space unit cell is set in IGPAR.

Related tags and articles

LCALCEPS, EFIELD_PEAD, LPEAD, IPEAD, LBERRY, IGPAR, NPPSTR, DIPOL, Berry phases and finite electric fields

Examples that use this tag