Vibrational frequencies of CO on Ni 111 surface: Difference between revisions

From VASP Wiki
No edit summary
 
(14 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Description: compute the vibrational frequencies of CO@Ni(111) (on top).
{{Sur_sci - Tutorial}}


----
== Task ==
*{{TAG|INCAR}}
 
  {{TAGBL|SYSTEM}} = CO on Ni111 - frequencies
Calculation of the vibrational frequencies of CO@Ni(111) (on top).
   
general:
  {{TAGBL|ENMAX}}  = 400
  {{TAGBL|ISMEAR}} =   2  ; {{TAGBL|SIGMA}} = 0.2
  {{TAGBL|ALGO}}  = Fast
  {{TAGBL|EDIFF}}  = 1E-6
  {{TAGBL|MAXMIX}} = 60  # reuse the mixer between ionic steps, saves time
   
dynamic:
  {{TAGBL|NSW}} = 100
  {{TAGBL|IBRION}} = 5
  {{TAGBL|NFREE}}  = 2


*{{TAG|KPOINTS}}
== Input ==
<pre>
k-points
0
Monkhorst-Pack
9 9 1
0 0 0
</pre>


*{{TAG|POSCAR}}
=== {{TAG|POSCAR}} ===
<pre>
<pre>
Ni - (111) + CO on-top                   
Ni - (111) + CO on-top                   
Line 54: Line 35:
</pre>
</pre>


Try to change the selective dynamics tag such that displacements
*Frequencies only for the CO molecule and the z-direction (z- and (x,y) are independent).
 
N.B.: this {{FILE|POSCAR}} is essentially the result ({{FILE|CONTCAR}} file) of the relaxation performed in the [[CO on Ni 111 surface]] example.
 
=== {{TAG|INCAR}} ===
  {{TAGBL|SYSTEM}} = CO on Ni111 - frequencies
   
general:
  {{TAGBL|ENMAX}}  = 400
  {{TAGBL|ISMEAR}} =    2  ; {{TAGBL|SIGMA}} = 0.2
  {{TAGBL|ALGO}}  = Fast
  {{TAGBL|EDIFF}}  = 1E-6
  {{TAGBL|MAXMIX}} = 60  # reuse the mixer between ionic steps, saves time
   
dynamic:
  {{TAGBL|NSW}} = 100
  {{TAGBL|IBRION}} = 5
  {{TAGBL|NFREE}}  = 2
 
*Small termination criterion ({{TAG|EDIFF}}).
*Automatic frequency calculation (displacement 0.04 <math>\AA</math>).
*Reuse of the mixer between ionic steps ({{TAG|MAXMIX}}) to save time.
 
=== {{TAG|KPOINTS}} ===
<pre>
k-points
0
Monkhorst-Pack
9 9 1
0 0 0
</pre>
 
== Calculation ==
 
*Finite differences give the following additional output in the {{TAG|OUTCAR}} fiel for frequency calculations:
Finite differences progress:
  Degree of freedom:  1/  2
  Displacement:        1/  2
  Total:              1/  4
 
*After the first calculation for the equilibrium geometry, {{TAG|NFREE}} displacements (<math>\pm</math>{{TAG|POTIM}}) are performed for each degree of freedom. From these displacements the dynamical matrix is set up and diagonalized.
 
*At the end of the {{TAG|OUTCAR}} file the following are listed:
**Forces.
**The dynamical matrix and finally.
**The eigenfrequencies.
**Eigenvectors (first normalized and then mass-weighted).
 
*The example output for the eigenvectors and eigenvalues of the dynamical matrix from the {{TAG|OUTCAR}} file should look like the following:
Eigenvectors and eigenvalues of the dynamical matrix
----------------------------------------------------
  1 f  =  63.914144 THz  401.584411 2PiTHz 2131.946301 cm-1  264.327748 meV
            X        Y        Z          dx          dy          dz
      0.000000  0.000000  0.000000            0          0          0
      0.000000  1.441116  2.038046            0          0          0
      1.248043  0.720558  4.076093            0          0          0
      0.000000  0.000000  6.108743            0          0          0
      0.000000  1.441116  8.153979            0          0          0
      0.000000  1.441116  9.908620            0          0  -0.761748
      0.000000  1.441116 11.063296            0          0    0.623594
   
   
  2 f  =  12.467410 THz    78.335050 2PiTHz  415.868035 cm-1    51.561083 meV
            X        Y        Z          dx          dy          dz
      0.000000  0.000000  0.000000            0          0          0
      0.000000  1.441116  2.038046            0          0          0
      1.248043  0.720558  4.076093            0          0          0
      0.000000  0.000000  6.108743            0          0          0
      0.000000  1.441116  8.153979            0          0          0
      0.000000  1.441116  9.908620            0          0  -0.623594
      0.000000  1.441116 11.063296            0          0  -0.781748
 
As one can see the first vibrational mode is the so-called ''CO stretch'' mode (stretching and contracting the C-O bond),
whereas the second mode shows the CO molecule moving w.r.t. to the metallic surface (''CO-metal'').
 
*Try to change the selective dynamics tag such that displacements
in x and y direction are allowed as well for CO (note that
in x and y direction are allowed as well for CO (note that
the selective dynamics flags always refer to cartesian coordinates),
the selective dynamics flags always refer to cartesian coordinates),
Line 70: Line 126:


== Download ==
== Download ==
[http://www.vasp.at/vasp-workshop/examples/COonNi111_freq.tgz COonNi111_freq.tgz]
[[Media:COonNi111_freq.tgz| COonNi111_freq.tgz]]
----
[[VASP_example_calculations|To the list of examples]] or to the [[The_VASP_Manual|main page]]
{{Sur_sci}}


[[Category:Examples]]
[[Category:Examples]]

Latest revision as of 14:20, 14 November 2019

Task

Calculation of the vibrational frequencies of CO@Ni(111) (on top).

Input

POSCAR

Ni - (111) + CO on-top                  
   3.53000000000000     
     0.7071067800000000    0.0000000000000000    0.0000000000000000
    -0.3535533900000000    0.6123724000000000    0.0000000000000000
     0.0000000000000000    0.0000000000000000    5.1961523999999999
   Ni   C    O 
     5     1     1
Selective dynamics
Direct
  0.0000000000000000  0.0000000000000000  0.0000000000000000   F   F   F
  0.3333333300000021  0.6666666699999979  0.1111111100000031   F   F   F
  0.6666666699999979  0.3333333300000021  0.2222222199999990   F   F   F
 -0.0000000000000000  0.0000000000000000  0.3326227833039623   F   F   F
  0.3333333300000021  0.6666666699999979  0.4445699380869117   F   F   F
  0.3333333300000021  0.6666666699999979  0.5403264650180125   F   F   T
  0.3333333300000021  0.6666666699999979  0.6032949698060487   F   F   T
 
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  • Frequencies only for the CO molecule and the z-direction (z- and (x,y) are independent).

N.B.: this POSCAR is essentially the result (CONTCAR file) of the relaxation performed in the CO on Ni 111 surface example.

INCAR

 SYSTEM = CO on Ni111 - frequencies
    
general:
  ENMAX  = 400
  ISMEAR =    2  ; SIGMA = 0.2
  ALGO   = Fast
  EDIFF  = 1E-6
  MAXMIX = 60  # reuse the mixer between ionic steps, saves time
    
dynamic:
  NSW = 100
  IBRION = 5
  NFREE  = 2
  • Small termination criterion (EDIFF).
  • Automatic frequency calculation (displacement 0.04 ).
  • Reuse of the mixer between ionic steps (MAXMIX) to save time.

KPOINTS

k-points
0
Monkhorst-Pack
9 9 1
0 0 0

Calculation

  • Finite differences give the following additional output in the OUTCAR fiel for frequency calculations:
Finite differences progress:
 Degree of freedom:   1/  2
 Displacement:        1/  2
 Total:               1/  4
  • After the first calculation for the equilibrium geometry, NFREE displacements (POTIM) are performed for each degree of freedom. From these displacements the dynamical matrix is set up and diagonalized.
  • At the end of the OUTCAR file the following are listed:
    • Forces.
    • The dynamical matrix and finally.
    • The eigenfrequencies.
    • Eigenvectors (first normalized and then mass-weighted).
  • The example output for the eigenvectors and eigenvalues of the dynamical matrix from the OUTCAR file should look like the following:
Eigenvectors and eigenvalues of the dynamical matrix
----------------------------------------------------
  1 f  =   63.914144 THz   401.584411 2PiTHz 2131.946301 cm-1   264.327748 meV
            X         Y         Z           dx          dy          dz
     0.000000  0.000000  0.000000            0           0           0
     0.000000  1.441116  2.038046            0           0           0
     1.248043  0.720558  4.076093            0           0           0
     0.000000  0.000000  6.108743            0           0           0
     0.000000  1.441116  8.153979            0           0           0
     0.000000  1.441116  9.908620            0           0   -0.761748
     0.000000  1.441116 11.063296            0           0    0.623594
   
   
  2 f  =   12.467410 THz    78.335050 2PiTHz  415.868035 cm-1    51.561083 meV
            X         Y         Z           dx          dy          dz
     0.000000  0.000000  0.000000            0           0           0
     0.000000  1.441116  2.038046            0           0           0
     1.248043  0.720558  4.076093            0           0           0
     0.000000  0.000000  6.108743            0           0           0
     0.000000  1.441116  8.153979            0           0           0
     0.000000  1.441116  9.908620            0           0   -0.623594
     0.000000  1.441116 11.063296            0           0   -0.781748

As one can see the first vibrational mode is the so-called CO stretch mode (stretching and contracting the C-O bond), whereas the second mode shows the CO molecule moving w.r.t. to the metallic surface (CO-metal).

  • Try to change the selective dynamics tag such that displacements

in x and y direction are allowed as well for CO (note that the selective dynamics flags always refer to cartesian coordinates), i.e,

 0.3333333300000021  0.6666666699999979  0.5403264650180125   F   F   T
 0.3333333300000021  0.6666666699999979  0.6032949698060487   F   F   T

to

 0.3333333300000021  0.6666666699999979  0.5403264650180125   T   T   T
 0.3333333300000021  0.6666666699999979  0.6032949698060487   T   T   T

Also test whether you need to decrease EDIFF to 1E-8.

Download

COonNi111_freq.tgz