Category:DFT+U: Difference between revisions

From VASP Wiki
No edit summary
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
The LDA and semilocal GGA functionals often fail to describe systems with localized (strongly correlated) <math>d</math> or <math>f</math> electrons (this manifests itself primarily in the form of unrealistic one-electron energies or too small magnetic moments). In some cases this can be remedied by introducing on the <math>d</math> or <math>f</math> atom a strong intra-atomic interaction in a simplified (screened) Hartree-Fock like manner (<math>E_{\text{HF}}(\hat{n})</math>), as an on-site replacement of the LDA/GGA functional:
The LDA and semilocal GGA functionals often fail to describe systems with localized (strongly correlated) <math>d</math> or <math>f</math> electrons (this manifests itself primarily in the form of unrealistic one-electron energies or too small magnetic moments). In some cases this can be remedied by introducing on the <math>d</math> or <math>f</math> atom a strong intra-atomic interaction in a simplified (screened) Hartree-Fock like manner (<math>E^{\text{HF}}[\hat{n}]</math>), as an on-site replacement of the LDA/GGA functional:
:<math>E_{\text{xc}}^{\text{LDA/GGA}+U}(n,\hat{n}) = E_{\text{xc}}^{\text{LDA/GGA}}(n) + E_{\text{HF}}(\hat{n}) - E_{\text{dc}}(\hat{n})</math>
:<math>E_{\text{xc}}^{\text{DFT}+U}[n,\hat{n}] = E_{\text{xc}}^{\text{DFT}}[n] + E^{\text{HF}}[\hat{n}] - E_{\text{dc}}[\hat{n}]</math>
where <math>E_{\text{dc}}(\hat{n})</math> is the double-counting term and <math>\hat{n}</math> is the on-site occupancy matrix of the <math>d</math> or <math>f</math> electrons. This approach is known as the DFT+U method (traditionally called LSDA+U{{cite|anisimov:prb:91}}).
where <math>E_{\text{dc}}[\hat{n}]</math> is the double-counting term and <math>\hat{n}</math> is the on-site occupancy matrix of the <math>d</math> or <math>f</math> electrons. This approach is known as the DFT+U method (traditionally called LSDA+U{{cite|anisimov:prb:91}}).


The first VASP DFT+U calculations, including some additional technical details on the VASP implementation, can be found in Ref. {{cite|rohrbach:jcp:03}} (the original implementation was done by Olivier Bengone {{cite|Bengone:prb:00}} and Georg Kresse).
The first VASP DFT+U calculations, including some additional technical details on the VASP implementation, can be found in Ref. {{cite|rohrbach:jcp:03}} (the original implementation was done by Olivier Bengone {{cite|Bengone:prb:00}} and Georg Kresse).
Line 8: Line 8:


==Theory==
==Theory==
DFT+U is a method that was proposed to improve the description of systems with strongly correlated <math>d</math> or <math>f</math> electrons, like antiferromagnetic NiO for instance, that are usually inaccurately described with the standard LDA and GGA functionals{{cite|anisimov:prb:91}}. Several variants of the DFT+U method exist (see Refs. {{cite|Ylvisaker:prb:2009}}{{cite|Himmetoglu:ijqc:2014}} for reviews) that differ for instance in the way the double counting term <math>E_{\text{dc}}(\hat{n})</math> is calculated. Three variants of them are implemented in VASP, whose formalism is briefly summarized below.  
DFT+U is a method that was proposed to improve the description of systems with strongly correlated <math>d</math> or <math>f</math> electrons, like antiferromagnetic NiO for instance, that are usually inaccurately described with the standard LDA and GGA functionals{{cite|anisimov:prb:91}}. Several variants of the DFT+U method exist (see Refs. {{cite|Ylvisaker:prb:2009}}{{cite|Himmetoglu:ijqc:2014}} for reviews) that differ for instance in the way the double counting term <math>E_{\text{dc}}[\hat{n}]</math> is calculated. Three variants of them are implemented in VASP, whose formalism is briefly summarized below.  


*{{TAG|LDAUTYPE}}=1: The rotationally invariant DFT+U introduced by Liechtenstein ''et al.''{{cite|liechtenstein:prb:95}}
*{{TAG|LDAUTYPE}}=1: The rotationally invariant DFT+U introduced by Liechtenstein ''et al.''{{cite|liechtenstein:prb:95}}
:This particular flavour of DFT+U is of the form
:This particular flavour of DFT+U is of the form
::<math>
::<math>
E_{\rm HF}({\hat n})=\frac{1}{2} \sum_{\{\gamma\}}
E^{\rm HF}[{\hat n}]=\frac{1}{2} \sum_{\{\gamma\}}
(U_{\gamma_1\gamma_3\gamma_2\gamma_4} -
(U_{\gamma_1\gamma_3\gamma_2\gamma_4} -
U_{\gamma_1\gamma_3\gamma_4\gamma_2}){ \hat
U_{\gamma_1\gamma_3\gamma_4\gamma_2}){ \hat
Line 50: Line 50:


::<math>
::<math>
E_{\mathrm{tot}}(n,\hat n)=E_{\mathrm{DFT}}(n)+E_{\mathrm{HF}}(\hat n)-E_{\mathrm{dc}}(\hat n)
E^{\mathrm{DFT}+U}[n,\hat n]=E^{\mathrm{DFT}}[n]+E^{\mathrm{HF}}[\hat n]-E_{\mathrm{dc}}[\hat n]
</math>
</math>


Line 56: Line 56:


::<math>
::<math>
E_{\mathrm{dc}}(\hat n) = \frac{U}{2} {\hat n}_{\mathrm{tot}}({\hat n}_{\mathrm{tot}}-1) -
E_{\mathrm{dc}}[\hat n] = \frac{U}{2} {\hat n}_{\mathrm{tot}}({\hat n}_{\mathrm{tot}}-1) -
\frac{J}{2} \sum_\sigma {\hat n}^\sigma_{\mathrm{tot}}({\hat n}^\sigma_{\mathrm{tot}}-1).
\frac{J}{2} \sum_\sigma {\hat n}^\sigma_{\mathrm{tot}}({\hat n}^\sigma_{\mathrm{tot}}-1).
</math>
</math>
Line 64: Line 64:


::<math>
::<math>
E_{\mathrm{DFT+U}}=E_{\mathrm{LSDA}}+\frac{(U-J)}{2}\sum_\sigma \left[  
E^{\mathrm{DFT+U}}=E^{\mathrm{DFT}}+\frac{(U-J)}{2}\sum_\sigma \left[  
\left(\sum_{m_1} n_{m_1,m_1}^{\sigma}\right) - \left(\sum_{m_1,m_2}  
\left(\sum_{m_1} n_{m_1,m_1}^{\sigma}\right) - \left(\sum_{m_1,m_2}  
\hat n_{m_1,m_2}^{\sigma} \hat n_{m_2,m_1}^{\sigma} \right) \right].
\hat n_{m_1,m_2}^{\sigma} \hat n_{m_2,m_1}^{\sigma} \right) \right].
Line 81: Line 81:


::<math>
::<math>
E_{\mathrm{dc}}(\hat n) = \frac{U}{2} {\hat n}_{\mathrm{tot}}({\hat n}_{\mathrm{tot}}-1) -
E_{\mathrm{dc}}[\hat n] = \frac{U}{2} {\hat n}_{\mathrm{tot}}({\hat n}_{\mathrm{tot}}-1) -
\frac{J}{2} \sum_\sigma {\hat n}^\sigma_{\mathrm{tot}}({\hat n}^\sigma_{\mathrm{tot}}-1).
\frac{J}{2} \sum_\sigma {\hat n}^\sigma_{\mathrm{tot}}({\hat n}^\sigma_{\mathrm{tot}}-1).
</math>
</math>
Line 87: Line 87:
==How to==
==How to==
DFT+U can be switched on with the {{TAG|LDAU}} tag, while the {{TAG|LDAUTYPE}} tag determines the DFT+U flavor that is used. {{TAG|LDAUL}} specifies the <math>l</math>-quantum number for which the on-site interaction is added, and the effective on-site Coulomb and exchange interactions are set (in eV) with the {{TAG|LDAUU}} and  {{TAG|LDAUJ}} tags, respectively. Note that it is recommended to increase {{TAG|LMAXMIX}} to 4 for ''d''-electrons or 6 for ''f''-elements.
DFT+U can be switched on with the {{TAG|LDAU}} tag, while the {{TAG|LDAUTYPE}} tag determines the DFT+U flavor that is used. {{TAG|LDAUL}} specifies the <math>l</math>-quantum number for which the on-site interaction is added, and the effective on-site Coulomb and exchange interactions are set (in eV) with the {{TAG|LDAUU}} and  {{TAG|LDAUJ}} tags, respectively. Note that it is recommended to increase {{TAG|LMAXMIX}} to 4 for ''d''-electrons or 6 for ''f''-elements.
==Tutorials==
*Lecture on [https://youtu.be/6F_WNIh6V7I the optical gap], introduces DFT+U towards the end of the lecture.


== References ==
== References ==

Latest revision as of 10:39, 22 September 2025

The LDA and semilocal GGA functionals often fail to describe systems with localized (strongly correlated) [math]\displaystyle{ d }[/math] or [math]\displaystyle{ f }[/math] electrons (this manifests itself primarily in the form of unrealistic one-electron energies or too small magnetic moments). In some cases this can be remedied by introducing on the [math]\displaystyle{ d }[/math] or [math]\displaystyle{ f }[/math] atom a strong intra-atomic interaction in a simplified (screened) Hartree-Fock like manner ([math]\displaystyle{ E^{\text{HF}}[\hat{n}] }[/math]), as an on-site replacement of the LDA/GGA functional:

[math]\displaystyle{ E_{\text{xc}}^{\text{DFT}+U}[n,\hat{n}] = E_{\text{xc}}^{\text{DFT}}[n] + E^{\text{HF}}[\hat{n}] - E_{\text{dc}}[\hat{n}] }[/math]

where [math]\displaystyle{ E_{\text{dc}}[\hat{n}] }[/math] is the double-counting term and [math]\displaystyle{ \hat{n} }[/math] is the on-site occupancy matrix of the [math]\displaystyle{ d }[/math] or [math]\displaystyle{ f }[/math] electrons. This approach is known as the DFT+U method (traditionally called LSDA+U[1]).

The first VASP DFT+U calculations, including some additional technical details on the VASP implementation, can be found in Ref. [2] (the original implementation was done by Olivier Bengone [3] and Georg Kresse).

More detail about the formalism is provided below.

Theory

DFT+U is a method that was proposed to improve the description of systems with strongly correlated [math]\displaystyle{ d }[/math] or [math]\displaystyle{ f }[/math] electrons, like antiferromagnetic NiO for instance, that are usually inaccurately described with the standard LDA and GGA functionals[1]. Several variants of the DFT+U method exist (see Refs. [4][5] for reviews) that differ for instance in the way the double counting term [math]\displaystyle{ E_{\text{dc}}[\hat{n}] }[/math] is calculated. Three variants of them are implemented in VASP, whose formalism is briefly summarized below.

  • LDAUTYPE=1: The rotationally invariant DFT+U introduced by Liechtenstein et al.[6]
This particular flavour of DFT+U is of the form
[math]\displaystyle{ E^{\rm HF}[{\hat n}]=\frac{1}{2} \sum_{\{\gamma\}} (U_{\gamma_1\gamma_3\gamma_2\gamma_4} - U_{\gamma_1\gamma_3\gamma_4\gamma_2}){ \hat n}_{\gamma_1\gamma_2}{\hat n}_{\gamma_3\gamma_4} }[/math]
and is determined by the PAW on-site occupancies
[math]\displaystyle{ {\hat n}_{\gamma_1\gamma_2} = \langle \Psi^{s_2} \mid m_2 \rangle \langle m_1 \mid \Psi^{s_1} \rangle }[/math]
and the (unscreened) on-site electron-electron interaction
[math]\displaystyle{ U_{\gamma_1\gamma_3\gamma_2\gamma_4}= \langle m_1 m_3 \mid \frac{1}{|\mathbf{r}-\mathbf{r}^\prime|} \mid m_2 m_4 \rangle \delta_{s_1 s_2} \delta_{s_3 s_4} }[/math]
where [math]\displaystyle{ |m\rangle }[/math] represents a real spherical harmonics of angular momentum [math]\displaystyle{ l }[/math]=LDAUL.
The unscreened electron-electron interaction [math]\displaystyle{ U_{\gamma_{1}\gamma_{3}\gamma_{2}\gamma_{4}} }[/math] can be written in terms of the Slater integrals [math]\displaystyle{ F^0 }[/math], [math]\displaystyle{ F^2 }[/math], [math]\displaystyle{ F^4 }[/math], and [math]\displaystyle{ F^6 }[/math] ([math]\displaystyle{ f }[/math] electrons). Using values for the Slater integrals calculated from atomic orbitals, however, would lead to a large overestimation of the true electron-electron interaction, since in solids the Coulomb interaction is screened (especially [math]\displaystyle{ F^0 }[/math]).
In practice these integrals are often treated as parameters, i.e., adjusted to reach agreement with experiment for a property like for instance the equilibrium volume, the magnetic moment or the band gap. They are normally specified in terms of the effective on-site Coulomb- and exchange parameters, [math]\displaystyle{ U }[/math] and [math]\displaystyle{ J }[/math] (LDAUU and LDAUJ, respectively). [math]\displaystyle{ U }[/math] and [math]\displaystyle{ J }[/math] can also be extracted from constrained-DFT calculations[7][8].
These translate into values for the Slater integrals in the following way (as implemented in VASP at the moment):
[math]\displaystyle{ L\; }[/math] [math]\displaystyle{ F^0\; }[/math] [math]\displaystyle{ F^2\; }[/math] [math]\displaystyle{ F^4\; }[/math] [math]\displaystyle{ F^6\; }[/math]
[math]\displaystyle{ 1\; }[/math] [math]\displaystyle{ U\; }[/math] [math]\displaystyle{ 5J\; }[/math] - -
[math]\displaystyle{ 2\; }[/math] [math]\displaystyle{ U\; }[/math] [math]\displaystyle{ \frac{14}{1+0.625}J }[/math] [math]\displaystyle{ 0.625 F^2\; }[/math] -
[math]\displaystyle{ 3\; }[/math] [math]\displaystyle{ U\; }[/math] [math]\displaystyle{ \frac{6435}{286+195 \cdot 0.668+250 \cdot 0.494}J }[/math] [math]\displaystyle{ 0.668 F^2\; }[/math] [math]\displaystyle{ 0.494 F^2\; }[/math]
The essence of the DFT+U method consists of the assumption that one may now write the total energy as:
[math]\displaystyle{ E^{\mathrm{DFT}+U}[n,\hat n]=E^{\mathrm{DFT}}[n]+E^{\mathrm{HF}}[\hat n]-E_{\mathrm{dc}}[\hat n] }[/math]
where the Hartree-Fock-like interaction replaces the semilocal on-site due to the fact that one subtracts a double-counting energy [math]\displaystyle{ E_{\mathrm{dc}} }[/math], which supposedly equals the on-site semilocal contribution to the total energy,
[math]\displaystyle{ E_{\mathrm{dc}}[\hat n] = \frac{U}{2} {\hat n}_{\mathrm{tot}}({\hat n}_{\mathrm{tot}}-1) - \frac{J}{2} \sum_\sigma {\hat n}^\sigma_{\mathrm{tot}}({\hat n}^\sigma_{\mathrm{tot}}-1). }[/math]
  • LDAUTYPE=2: The simplified (rotationally invariant) approach to the DFT+U, introduced by Dudarev et al.[9]
This flavour of DFT+U is of the following form:
[math]\displaystyle{ E^{\mathrm{DFT+U}}=E^{\mathrm{DFT}}+\frac{(U-J)}{2}\sum_\sigma \left[ \left(\sum_{m_1} n_{m_1,m_1}^{\sigma}\right) - \left(\sum_{m_1,m_2} \hat n_{m_1,m_2}^{\sigma} \hat n_{m_2,m_1}^{\sigma} \right) \right]. }[/math]
This can be understood as adding a penalty functional to the semilocal total energy expression that forces the on-site occupancy matrix in the direction of idempotency,
[math]\displaystyle{ \hat n^{\sigma} = \hat n^{\sigma} \hat n^{\sigma} }[/math].
Real matrices are only idempotent when their eigenvalues are either 1 or 0, which for an occupancy matrix translates to either fully occupied or fully unoccupied levels.
Note: in Dudarev's approach the parameters [math]\displaystyle{ U }[/math] and [math]\displaystyle{ J }[/math] do not enter seperately, only the difference [math]\displaystyle{ U-J }[/math] is meaningful.
  • LDAUTYPE=3: This option is for the calculation of the parameter [math]\displaystyle{ U }[/math] using the linear response approach from Ref. [10]. The steps to use this method are shown for the example of NiO.
  • LDAUTYPE=4: same as LDAUTYPE=1, but without exchange splitting (i.e., the total spin-up plus spin-down occupancy matrix is used). The double-counting term is given by
[math]\displaystyle{ E_{\mathrm{dc}}[\hat n] = \frac{U}{2} {\hat n}_{\mathrm{tot}}({\hat n}_{\mathrm{tot}}-1) - \frac{J}{2} \sum_\sigma {\hat n}^\sigma_{\mathrm{tot}}({\hat n}^\sigma_{\mathrm{tot}}-1). }[/math]

How to

DFT+U can be switched on with the LDAU tag, while the LDAUTYPE tag determines the DFT+U flavor that is used. LDAUL specifies the [math]\displaystyle{ l }[/math]-quantum number for which the on-site interaction is added, and the effective on-site Coulomb and exchange interactions are set (in eV) with the LDAUU and LDAUJ tags, respectively. Note that it is recommended to increase LMAXMIX to 4 for d-electrons or 6 for f-elements.

Tutorials

  • Lecture on the optical gap, introduces DFT+U towards the end of the lecture.

References


Pages in category "DFT+U"

The following 6 pages are in this category, out of 6 total.