IMIX: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 22: Line 22:
:and
:and
::<math>\rho_{N+1}=\rho_{N+1}+\dot{\rho}_{N+1/2}</math>.
::<math>\rho_{N+1}=\rho_{N+1}+\dot{\rho}_{N+1/2}</math>.
:For {{TAG|BMIX}}&asymp;0, no model for the dielectric matrix is used. It is easy to see, that for <math>\mu=2</math> a simple straight mixing is obtained. Therefore, <math>\mu=2</math> corresponds to maximal damping, and obviously <math>\mu=0</math> implies no damping. Optimal parameters for <math>\mu</math> and {{TAG|AMIX}} can be determined by converging first with the Pulay mixer ({{TAG|IMIX}}=4) to the groundstate. Then the eigenvalues of the charge dielectric matrix as given in the {{FILE|OUTCAR}} file must be inspected. Search for the last orrurance of
eigenvalues of (default mixing * dielectric matrix)
:in the {{FILE|OUTCAR}} file. The optimal parameters are then given by:
::{|
|{{TAG|AMIX}}||=||{{TAG|AMIX}}(as used in Pulay run)* smallest eigenvalue
|-
|{{TAG|AMIN}}||=||2*SQRT(smallest eigenvalue/largest eigenvalue)
|}


*{{TAG|IMIX}}=4
*{{TAG|IMIX}}=4

Revision as of 17:31, 7 February 2011

IMIX = 0 | 1 | 2 | 4
Default: IMIX = 4 

Description: IMIX specifies the type of mixing.


[math]\displaystyle{ \rho_{\rm mix}=\rho_{\rm out} }[/math]
The mixed density is given by
[math]\displaystyle{ \rho_{\rm mix}\left(G\right)=\rho_{\rm in}\left(G\right)+A \frac{G^2}{G^2+B^2}\Bigl(\rho_{\rm out}\left(G\right)-\rho_{\rm in}\left(G\right)\Bigr) }[/math]
with [math]\displaystyle{ A }[/math]=AMIX and [math]\displaystyle{ B }[/math]=BMIX
If BMIX is chosen to be very small, e.g. BMIX=0.0001, a simple straight mixing is obtained. Please mind, that BMIX=0 might cause floating point exceptions on some platforms.
  • IMIX=2: A variant of the popular Tchebycheff mixing scheme.[2]
In our implementation a second order equation of motion is used, that reads:
[math]\displaystyle{ \ddot{\rho}_{\rm in}\left(G\right) = 2*A \frac{G^2}{G^2+B^2}\Bigl(\rho_{\rm out}\left(G\right)-\rho_{\rm in}\left(G\right)\Bigr)-\mu \dot{\rho}_{\rm in}\left(G\right) }[/math]
with [math]\displaystyle{ A }[/math]=AMIX, [math]\displaystyle{ B }[/math]=BMIX, and [math]\displaystyle{ \mu }[/math]=AMIN.
A simple velocity Verlet algorithm is used to integrate this equation, and the discretized equation reads (the index N now refers to the electronic iteration, F is the force acting on the charge):
[math]\displaystyle{ \dot{\rho}_{N+1/2} = \Bigl(\left(1-\mu/2\right) \dot{\rho}_{N-1/2} + 2*F_N \Bigr)/\left(1+\mu/2\right) }[/math]
where
[math]\displaystyle{ F\left(G\right)=A\frac{G^2}{G^2+B^2} \Bigl(\rho_{\rm out}\left(G\right)-\rho_{\rm in}\left(G\right)\Bigr) }[/math]
and
[math]\displaystyle{ \rho_{N+1}=\rho_{N+1}+\dot{\rho}_{N+1/2} }[/math].
For BMIX≈0, no model for the dielectric matrix is used. It is easy to see, that for [math]\displaystyle{ \mu=2 }[/math] a simple straight mixing is obtained. Therefore, [math]\displaystyle{ \mu=2 }[/math] corresponds to maximal damping, and obviously [math]\displaystyle{ \mu=0 }[/math] implies no damping. Optimal parameters for [math]\displaystyle{ \mu }[/math] and AMIX can be determined by converging first with the Pulay mixer (IMIX=4) to the groundstate. Then the eigenvalues of the charge dielectric matrix as given in the OUTCAR file must be inspected. Search for the last orrurance of
eigenvalues of (default mixing * dielectric matrix)
in the OUTCAR file. The optimal parameters are then given by:
AMIX = AMIX(as used in Pulay run)* smallest eigenvalue
AMIN = 2*SQRT(smallest eigenvalue/largest eigenvalue)

Related Tags and Sections

INIMIX, MAXMIX, AMIX, BMIX, AMIX_MAG, BMIX_MAG, AMIN, MIXPRE, WC

References


Contents