DFT-D3
In the DFT-D3 method of Grimme et al.[1], the following expression for the vdW dispersion energy-correction term is used:
- [math]\displaystyle{ E_{\mathrm{disp}} = -\frac{1}{2} \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}} \sum_{\mathbf{L}}{}^\prime \left ( f_{d,6}(r_{ij,L})\,\frac{C_{6ij}}{r_{ij,{L}}^6} +f_{d,8}(r_{ij,L})\,\frac{C_{8ij}}{r_{ij,L}^8} \right ). }[/math]
Unlike in the method DFT-D2, the dispersion coefficients [math]\displaystyle{ C_{6ij} }[/math] are geometry-dependent as they are calculated on the basis of the local geometry (coordination number) around atoms [math]\displaystyle{ i }[/math] and [math]\displaystyle{ j }[/math]. Two variants of DFT-D3, that differ in the damping functions [math]\displaystyle{ f_{d,n} }[/math], are available.
DFT-D3(zero)
In the zero-damping variant of DFT-D3,[1] invoked by setting IVDW=11, the damping function reads
- [math]\displaystyle{ f_{d,n}(r_{ij}) = \frac{s_n}{1+6(r_{ij}/(s_{R,n}R_{0ij}))^{-\alpha_{n}}} }[/math]
where [math]\displaystyle{ R_{0ij} = \sqrt{\frac{C_{8ij}}{C_{6ij}}} }[/math], the parameters [math]\displaystyle{ \alpha_6 }[/math], [math]\displaystyle{ \alpha_8 }[/math], [math]\displaystyle{ s_{R,8} }[/math] and [math]\displaystyle{ s_{6} }[/math] are fixed at values of 14, 16, 1, and 1, respectively, while [math]\displaystyle{ s_{8} }[/math] and [math]\displaystyle{ s_{R,6} }[/math] are adjustable parameters whose values depend on the choice of the exchange-correlation functional.
Optionally, the following parameters can be defined in the INCAR file (the given values are the default ones):
- VDW_RADIUS=50.2 : cutoff radius (in [math]\displaystyle{ \AA }[/math]) for pair interactions considered in the equation of [math]\displaystyle{ E_{\mathrm{disp}} }[/math]
- VDW_CNRADIUS=20.0 : cutoff radius (in [math]\displaystyle{ \AA }[/math]) for the calculation of the coordination numbers
- VDW_S8=[real] : damping function parameter [math]\displaystyle{ s_8 }[/math]
- VDW_SR=[real] : damping function parameter [math]\displaystyle{ s_{R,6} }[/math]
DFT-D3(BJ)
In the Becke-Johnson (BJ) damping variant of DFT-D3,[2], invoked by setting IVDW=12, the damping function is given by
- [math]\displaystyle{ f_{d,n}(r_{ij}) = \frac{s_n\,r_{ij}^n}{r_{ij}^n + (a_1\,R_{0ij}+a_2)^n} }[/math]
with [math]\displaystyle{ s_6=1 }[/math] and [math]\displaystyle{ a_1 }[/math], [math]\displaystyle{ a_2 }[/math], and [math]\displaystyle{ s_8 }[/math] being adjustable parameters. As before, the parameters VDW_RADIUS and VDW_CNRADIUS can be used to change the default values for the cutoff radii.
Optionally, the parameters of the damping function can be controlled using the following INCAR tags:
Mind:
|
Related tags and articles
VDW_RADIUS, VDW_CNRADIUS, VDW_S8, VDW_SR, VDW_A1, VDW_A2, IVDW, DFT-D2, DFT-ulg, DFT-D4