DFT-D2: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(33 intermediate revisions by 3 users not shown)
Line 1: Line 1:
In the DFT-D2 method of Grimme{{cite|grimme:jcc:06}}, the correction term takes the form:
In the DFT-D2 method of Grimme{{cite|grimme:jcc:06}} the correction term takes the form:


:<math>E_{\mathrm{disp}} = -\frac{1}{2}  \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}}  \sum_{\mathbf{L}} {}^{\prime}  \frac{C_{6ij}}{r_{ij,L}^{6}}  f_{d,6}({r}_{ij,\mathbf{L}}) </math>
:<math>E_{\mathrm{disp}} = -\frac{1}{2}  \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}}  \sum_{\mathbf{L}} {}^{\prime}  \frac{C_{6ij}}{r_{ij,L}^{6}}  f_{d,6}({r}_{ij,\mathbf{L}}) </math>
Line 15: Line 15:
:<math>f_{d,6}(r_{ij}) = \frac{s_6}{1+e^{-d(r_{ij}/(s_R\,R_{0ij})-1)}}</math>
:<math>f_{d,6}(r_{ij}) = \frac{s_6}{1+e^{-d(r_{ij}/(s_R\,R_{0ij})-1)}}</math>


whereby the global scaling parameter <math>s_6</math> has been optimized for several different DFT functionals such as PBE (<math>s_6=0.75</math>), BLYP (<math>s_6=1.2</math>) or B3LYP (<math>s_6=1.05</math>). The parameter <math>s_R</math> is usually fixed at 1.00. The DFT-D2 method can be activated by setting {{TAG|IVDW}}=''1|10'' or by specifying {{TAG|LVDW}}=''.TRUE.'' (this parameter is obsolete as of VASP.5.3.3). Optionally, the damping function and the vdW parameters can be controlled using the following flags (the default values are listed):
whereby the global scaling parameter <math>s_6</math> has been optimized for several different DFT functionals such as PBE (<math>s_6=0.75</math>), BLYP (<math>s_6=1.2</math>) or B3LYP (<math>s_6=1.05</math>). The parameter <math>s_R</math> is usually fixed at 1.00.
 
The performance of PBE-D2 method in optimization of various crystalline systems has been tested systematically in reference {{cite|bucko:jpca:10}}.
{{NB|important|It is recommended to use the more advanced and more accurate method {{TAG|DFT-D3}}.{{cite|grimme:jcp:10}}}}
 
== Usage ==
 
The DFT-D2 method is activated by setting {{TAG|IVDW}}=1 or 10 (or the obsolete {{TAG|LVDW}}=''.TRUE.''). Optionally, the damping function and the vdW parameters can be controlled using the following flags (the given values are the default ones):


*{{TAG|VDW_RADIUS}}=50.0 : cutoff radius (in <math>\AA</math>) for pair interactions
*{{TAG|VDW_RADIUS}}=50.0 : cutoff radius (in <math>\AA</math>) for pair interactions
Line 24: Line 31:
*{{TAG|VDW_C6}}=[real array] : <math>C_6</math> parameters (<math>\mathrm{Jnm}^{6}\mathrm{mol}^{-1}</math>) for each species defined in the {{TAG|POSCAR}} file
*{{TAG|VDW_C6}}=[real array] : <math>C_6</math> parameters (<math>\mathrm{Jnm}^{6}\mathrm{mol}^{-1}</math>) for each species defined in the {{TAG|POSCAR}} file
*{{TAG|VDW_R0}}=[real array] : <math>R_0</math> parameters (<math>\AA</math>) for each species defined in the {{TAG|POSCAR}} file
*{{TAG|VDW_R0}}=[real array] : <math>R_0</math> parameters (<math>\AA</math>) for each species defined in the {{TAG|POSCAR}} file
*{{TAG|LVDW_EWALD}}=''.FALSE.'' : decides whether the lattice summation in <math>E_{\mathrm{disp}}</math> expression by means of Ewald's summation is computed (available in VASP.5.3.4 and later)
*{{TAG|LVDW_EWALD}}=''.FALSE.'' : the lattice summation in <math>E_{\mathrm{disp}}</math> expression is computed by means of Ewald's summation (''.TRUE.'' ) or via a real space summation over all atomic pairs within cutoff radius {{TAG|VDW_RADIUS}} (''.FALSE.'').  (available in VASP.5.3.4 and later)
 
The performance of PBE-D2 method in optimization of various crystalline systems has been tested systematically in reference {{cite|bucko:jpca:10}}.
 
== IMPORTANT NOTES ==


{{NB|mind|
*The defaults for {{TAG|VDW_C6}} and {{TAG|VDW_R0}} are defined only for elements in the first five rows of the periodic table (i.e. H-Xe). If the system contains other elements the user has to define these parameters in {{TAG|INCAR}}.
*The defaults for {{TAG|VDW_C6}} and {{TAG|VDW_R0}} are defined only for elements in the first five rows of the periodic table (i.e. H-Xe). If the system contains other elements the user has to define these parameters in {{TAG|INCAR}}.
 
*The defaults for parameters controlling the damping function ({{TAG|VDW_S6}}, {{TAG|VDW_SR}}, {{TAG|VDW_D}}) are available for the PBE ({{TAG|GGA}}{{=}}PE), BP, revPBE, PBE0, TPSS, and B3LYP functionals. If any other functional is used in a DFT-D2 calculation, the value of {{TAG|VDW_S6}}  (or {{TAG|VDW_SCALING}} in versions before VASP.5.3.4) has to be defined in {{TAG|INCAR}}.
*The defaults for parameters controlling the damping function ({{TAG|VDW_S6}}, {{TAG|VDW_SR}}, {{TAG|VDW_D}}) are available only for the PBE functional ({{TAG|GGA}}=PE). If a functional other than PBE is used in a DFT-D2 calculation, the value of {{TAG|VDW_S6}}  (or {{TAG|VDW_SCALING}} in versions before VASP.5.3.4) has to be defined in {{TAG|INCAR}}.
 
*As of VASP.5.3.4, the default value for {{TAG|VDW_RADIUS}} has been increased from 30 to 50 <math>\AA</math>.
*As of VASP.5.3.4, the default value for {{TAG|VDW_RADIUS}} has been increased from 30 to 50 <math>\AA</math>.
*Ewald's summation in the calculation of <math>E_{\mathrm{disp}}</math> calculation (controlled via {{TAG|LVDW_EWALD}}) is implemented according to reference {{cite|kerber:jcc:08}} and is available as of VASP.5.3.4.}}


*Ewald's summation in the calculation of <math>E_{\mathrm{disp}}</math> calculation (controlled via {{TAG|LVDW_EWALD}}) is implemented according to reference {{cite|kerber:jcc:08}} and is available as of VASP.5.3.4.
== Related tags and articles ==
 
{{TAG|VDW_RADIUS}},
== Related Tags and Sections ==
{{TAG|VDW_S6}},
{{TAG|VDW_SR}},
{{TAG|VDW_SCALING}},
{{TAG|VDW_D}},
{{TAG|VDW_C6}},
{{TAG|VDW_R0}},
{{TAG|LVDW_EWALD}},
{{TAG|IVDW}},
{{TAG|IVDW}},
{{TAG|DFT-ulg}},
{{TAG|DFT-D3}},
{{TAG|DFT-D3}},
{{TAG|Tkatchenko-Scheffler method}},
[[DFT-D4]]
{{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}},
{{TAG|Self-consistent screening in Tkatchenko-Scheffler method}},
{{TAG|Many-body dispersion energy}},
{{TAG|dDsC dispersion correction}}
 
{{sc|DFT-D2|Examples|Examples that use this tag}}


== References ==
== References ==
Line 53: Line 57:


----
----
[[Category:Exchange-correlation functionals]][[Category:van der Waals functionals]][[Category:Theory]]
[[Category:Exchange-correlation functionals]][[Category:van der Waals functionals]][[Category:Theory]][[Category:Howto]]

Latest revision as of 14:34, 6 March 2025

In the DFT-D2 method of Grimme[1] the correction term takes the form:

[math]\displaystyle{ E_{\mathrm{disp}} = -\frac{1}{2} \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}} \sum_{\mathbf{L}} {}^{\prime} \frac{C_{6ij}}{r_{ij,L}^{6}} f_{d,6}({r}_{ij,\mathbf{L}}) }[/math]

where the first two summations are over all [math]\displaystyle{ N_{at} }[/math] atoms in the unit cell and the third summation is over all translations of the unit cell [math]\displaystyle{ {\mathbf{L}}=(l_1,l_2,l_3) }[/math] where the prime indicates that [math]\displaystyle{ i\not=j }[/math] for [math]\displaystyle{ {\mathbf{L}}=0 }[/math]. [math]\displaystyle{ C_{6ij} }[/math] denotes the dispersion coefficient for the atom pair [math]\displaystyle{ ij }[/math], [math]\displaystyle{ {r}_{ij,\mathbf{L}} }[/math] is the distance between atom [math]\displaystyle{ i }[/math] located in the reference cell [math]\displaystyle{ \mathbf{L}=0 }[/math] and atom [math]\displaystyle{ j }[/math] in the cell [math]\displaystyle{ L }[/math] and the term [math]\displaystyle{ f(r_{ij}) }[/math] is a damping function whose role is to scale the force field such as to minimize the contributions from interactions within typical bonding distances. In practice, the terms in the equation for [math]\displaystyle{ E_{\mathrm{disp}} }[/math] corresponding to interactions over distances longer than a certain suitably chosen cutoff radius (VDW_RADIUS, see below) contribute only negligibly to [math]\displaystyle{ E_{\mathrm{disp}} }[/math] and can be ignored. Parameters [math]\displaystyle{ C_{6ij} }[/math] and [math]\displaystyle{ R_{0ij} }[/math] are computed using the following combination rules:

[math]\displaystyle{ C_{6ij} = \sqrt{C_{6ii} C_{6jj}} }[/math]

and

[math]\displaystyle{ R_{0ij} = R_{0i}+ R_{0j}. }[/math]

The values for [math]\displaystyle{ C_{6ii} }[/math] and [math]\displaystyle{ R_{0i} }[/math] are tabulated for each element and are insensitive to the particular chemical situation (for instance, [math]\displaystyle{ C_6 }[/math] for carbon in methane takes exactly the same value as that for C in benzene within this approximation). In the DFT-D2 method, a Fermi-type damping function is used:

[math]\displaystyle{ f_{d,6}(r_{ij}) = \frac{s_6}{1+e^{-d(r_{ij}/(s_R\,R_{0ij})-1)}} }[/math]

whereby the global scaling parameter [math]\displaystyle{ s_6 }[/math] has been optimized for several different DFT functionals such as PBE ([math]\displaystyle{ s_6=0.75 }[/math]), BLYP ([math]\displaystyle{ s_6=1.2 }[/math]) or B3LYP ([math]\displaystyle{ s_6=1.05 }[/math]). The parameter [math]\displaystyle{ s_R }[/math] is usually fixed at 1.00.

The performance of PBE-D2 method in optimization of various crystalline systems has been tested systematically in reference [2].

Important: It is recommended to use the more advanced and more accurate method DFT-D3.[3]

Usage

The DFT-D2 method is activated by setting IVDW=1 or 10 (or the obsolete LVDW=.TRUE.). Optionally, the damping function and the vdW parameters can be controlled using the following flags (the given values are the default ones):

  • VDW_RADIUS=50.0 : cutoff radius (in [math]\displaystyle{ \AA }[/math]) for pair interactions
  • VDW_S6=0.75 : global scaling factor [math]\displaystyle{ s_6 }[/math] (available in VASP.5.3.4 and later)
  • VDW_SR=1.00 : scaling factor [math]\displaystyle{ s_R }[/math] (available in VASP.5.3.4 and later)
  • VDW_SCALING=0.75 : the same as VDW_S6 (obsolete as of VASP.5.3.4)
  • VDW_D=20.0 : damping parameter [math]\displaystyle{ d }[/math]
  • VDW_C6=[real array] : [math]\displaystyle{ C_6 }[/math] parameters ([math]\displaystyle{ \mathrm{Jnm}^{6}\mathrm{mol}^{-1} }[/math]) for each species defined in the POSCAR file
  • VDW_R0=[real array] : [math]\displaystyle{ R_0 }[/math] parameters ([math]\displaystyle{ \AA }[/math]) for each species defined in the POSCAR file
  • LVDW_EWALD=.FALSE. : the lattice summation in [math]\displaystyle{ E_{\mathrm{disp}} }[/math] expression is computed by means of Ewald's summation (.TRUE. ) or via a real space summation over all atomic pairs within cutoff radius VDW_RADIUS (.FALSE.). (available in VASP.5.3.4 and later)


Mind:
  • The defaults for VDW_C6 and VDW_R0 are defined only for elements in the first five rows of the periodic table (i.e. H-Xe). If the system contains other elements the user has to define these parameters in INCAR.
  • The defaults for parameters controlling the damping function (VDW_S6, VDW_SR, VDW_D) are available for the PBE (GGA=PE), BP, revPBE, PBE0, TPSS, and B3LYP functionals. If any other functional is used in a DFT-D2 calculation, the value of VDW_S6 (or VDW_SCALING in versions before VASP.5.3.4) has to be defined in INCAR.
  • As of VASP.5.3.4, the default value for VDW_RADIUS has been increased from 30 to 50 [math]\displaystyle{ \AA }[/math].
  • Ewald's summation in the calculation of [math]\displaystyle{ E_{\mathrm{disp}} }[/math] calculation (controlled via LVDW_EWALD) is implemented according to reference [4] and is available as of VASP.5.3.4.

Related tags and articles

VDW_RADIUS, VDW_S6, VDW_SR, VDW_SCALING, VDW_D, VDW_C6, VDW_R0, LVDW_EWALD, IVDW, DFT-ulg, DFT-D3, DFT-D4

References