Time-propagation algorithms in molecular dynamics: Difference between revisions

From VASP Wiki
(Created page with " In molecular dynamics simulations the positions <math>\mathbf{r}_{i}(t)</math> and velocities <math>\mathbf{v}_{i}(t)</math> are monitored as functions of time <math>t</math>. This time dependence is obtained by integrating Newton's equations of motion. To solve the equations of motions a color mix of integration algorithms was developed. The time dependence of a particle can be expressed in a Taylor expansion ::<math> \mathbf{r}_{i}(t+\Delta t) = \mathbf{r}_{i}(t) +...")
 
No edit summary
Line 20: Line 20:
</math>
</math>
=== Velocity-Verlet Integration scheme ===
=== Velocity-Verlet Integration scheme ===
<ol>
  <li><math>\mathbf{v}_{i}(t + \frac{1}{2}\Delta t)=\mathbf{v}_{i}(t)+\frac{\mathbf{F}_{i}(t)}{2m_{i}}\Delta t</math></li>
  <li>Tea</li>
  <li>Milk</li>
</ol>


=== Leap-Frog Integration scheme ===





Revision as of 18:41, 16 October 2024

In molecular dynamics simulations the positions [math]\displaystyle{ \mathbf{r}_{i}(t) }[/math] and velocities [math]\displaystyle{ \mathbf{v}_{i}(t) }[/math] are monitored as functions of time [math]\displaystyle{ t }[/math]. This time dependence is obtained by integrating Newton's equations of motion. To solve the equations of motions a color mix of integration algorithms was developed. The time dependence of a particle can be expressed in a Taylor expansion

[math]\displaystyle{ \mathbf{r}_{i}(t+\Delta t) = \mathbf{r}_{i}(t) + \mathbf{v}_{i}(t)\Delta t + \frac{\mathbf{F}_{i}}{2m}(t)\Delta t^{2} + \frac{\partial^{3} \mathbf{r}_{i}(t)}{\partial t^{3}}\Delta t^{3} + \mathcal{O}(\Delta t^{4}) }[/math]

A backward propagation in time by a time step [math]\displaystyle{ \Delta t }[/math] can be obtained in a similar way

[math]\displaystyle{ \mathbf{r}_{i}(t-\Delta t) = \mathbf{r}_{i}(t) - \mathbf{v}_{i}(t)\Delta t + \frac{\mathbf{F}_{i}}{2m}(t)\Delta t^{2} - \frac{\partial^{3} \mathbf{r}_{i}(t)}{\partial t^{3}}\Delta t^{3} + \mathcal{O}(\Delta t^{4}) }[/math]

Adding these two equation gives and rearrangement gives the Verlet algorithm

[math]\displaystyle{ \mathbf{r}_{i}(t+\Delta t) = 2\mathbf{r}_{i}(t)-\mathbf{r}_{i}(t-\Delta t)+\frac{\mathbf{F}_{i}}{2m}(t)\Delta t^{2}+\mathcal{O}(\Delta t ^{3}) }[/math]

The Verlet algorithm can be rearranged to the Velocity-Verlet algorithm by inserting [math]\displaystyle{ \mathbf{v}_{i}(t)=\frac{\mathbf{r}_{i}(t)-\mathbf{r}_{i}(t-\Delta t)}{\Delta t} }[/math]

[math]\displaystyle{ \mathbf{r}_{i}(t+\Delta t) = \mathbf{r}_{i}(t)+ \mathbf{v}_{i}(t)\Delta t+\frac{\mathbf{F}_{i}}{2m}(t)\Delta t^{2} }[/math]

Velocity-Verlet Integration scheme

  1. [math]\displaystyle{ \mathbf{v}_{i}(t + \frac{1}{2}\Delta t)=\mathbf{v}_{i}(t)+\frac{\mathbf{F}_{i}(t)}{2m_{i}}\Delta t }[/math]
  2. Tea
  3. Milk

Leap-Frog Integration scheme

MDALGO thermostat integration algorithm
0 Nose-Hoover Velocity-Verlet
1 Andersen Leap-Frog
2 Nose-Hoover Leap-Frog
3 Langevin Velocity-Verlet
4 NHC Leap-Frog
5 CSVR Leap-Frog