IMIX: Difference between revisions
No edit summary |
No edit summary |
||
Line 38: | Line 38: | ||
*{{TAG|IMIX}}=4: Broyden's 2<sup>nd</sup> method,<ref name="bluegel:thesis:88"/><ref name="johnson:prb:88"/> or Pulay's mixing method<ref name="pulay:cpl:80"/> (depending on the choice of {{TAG|WC}}). | *{{TAG|IMIX}}=4: Broyden's 2<sup>nd</sup> method,<ref name="bluegel:thesis:88"/><ref name="johnson:prb:88"/> or Pulay's mixing method<ref name="pulay:cpl:80"/> (depending on the choice of {{TAG|WC}}). | ||
:A reasonable choice for {{TAG|AMIN}} is usually {{TAG|AMIN}}=0.4. {{TAG|AMIX}} depends very much on the system, for metals this parameter usually has to be rather small, e.g. {{TAG|AMIX}}= 0.02. | |||
:In the Broyden scheme, the functional form of the initial mixing matrix is determined by {{TAG|AMIX}} and {{TAG|BMIX}} (or alternatively specified by means of the {{TAG|INIMIX}}-tag). The metric used in the Broyden scheme is specified through {{TAG|MIXPRE}}. | |||
== Related Tags and Sections == | == Related Tags and Sections == |
Revision as of 13:40, 8 February 2011
IMIX = 0 | 1 | 2 | 4
Default: IMIX = 4
Description: IMIX specifies the type of mixing.
- IMIX=0: no mixing.
- [math]\displaystyle{ \rho_{\rm mix}=\rho_{\rm out}\, }[/math]
- The mixed density is given by
- [math]\displaystyle{ \rho_{\rm mix}\left(G\right)=\rho_{\rm in}\left(G\right)+A \frac{G^2}{G^2+B^2}\Bigl(\rho_{\rm out}\left(G\right)-\rho_{\rm in}\left(G\right)\Bigr) }[/math]
- with [math]\displaystyle{ A }[/math]=AMIX and [math]\displaystyle{ B }[/math]=BMIX
- If BMIX is chosen to be very small, e.g. BMIX=0.0001, a simple straight mixing is obtained. Please mind, that BMIX=0 might cause floating point exceptions on some platforms.
- In our implementation a second order equation of motion is used, that reads:
- [math]\displaystyle{ \ddot{\rho}_{\rm in}\left(G\right) = 2*A \frac{G^2}{G^2+B^2}\Bigl(\rho_{\rm out}\left(G\right)-\rho_{\rm in}\left(G\right)\Bigr)-\mu \dot{\rho}_{\rm in}\left(G\right) }[/math]
- with [math]\displaystyle{ A }[/math]=AMIX, [math]\displaystyle{ B }[/math]=BMIX, and [math]\displaystyle{ \mu }[/math]=AMIN.
- A simple velocity Verlet algorithm is used to integrate this equation, and the discretized equation reads (the index N now refers to the electronic iteration, F is the force acting on the charge):
- [math]\displaystyle{ \dot{\rho}_{N+1/2} = \Bigl(\left(1-\mu/2\right) \dot{\rho}_{N-1/2} + 2*F_N \Bigr)/\left(1+\mu/2\right) }[/math]
- where
- [math]\displaystyle{ F\left(G\right)=A\frac{G^2}{G^2+B^2} \Bigl(\rho_{\rm out}\left(G\right)-\rho_{\rm in}\left(G\right)\Bigr) }[/math]
- and
- [math]\displaystyle{ \rho_{N+1}=\rho_{N+1}+\dot{\rho}_{N+1/2} }[/math].
- For BMIX≈0, no model for the dielectric matrix is used. It is easy to see, that for [math]\displaystyle{ \mu=2 }[/math] a simple straight mixing is obtained. Therefore, [math]\displaystyle{ \mu=2 }[/math] corresponds to maximal damping, and obviously [math]\displaystyle{ \mu=0 }[/math] implies no damping. Optimal parameters for [math]\displaystyle{ \mu }[/math] and AMIX can be determined by converging first with the Pulay mixer (IMIX=4) to the groundstate. Then the eigenvalues of the charge dielectric matrix as given in the OUTCAR file must be inspected. Search for the last orrurance of
eigenvalues of (default mixing * dielectric matrix)
- in the OUTCAR file. The optimal parameters are then given by:
- A reasonable choice for AMIN is usually AMIN=0.4. AMIX depends very much on the system, for metals this parameter usually has to be rather small, e.g. AMIX= 0.02.
- In the Broyden scheme, the functional form of the initial mixing matrix is determined by AMIX and BMIX (or alternatively specified by means of the INIMIX-tag). The metric used in the Broyden scheme is specified through MIXPRE.
Related Tags and Sections
INIMIX, MAXMIX, AMIX, BMIX, AMIX_MAG, BMIX_MAG, AMIN, MIXPRE, WC
References
- ↑ G. P. Kerker, Phys. Rev. B 23, 3082 (1981).
- ↑ H. Akai and P.H. Dederichs, J. Phys. C 18 (1985).
- ↑ S. Blügel, PhD Thesis, RWTH Aachen (1988).
- ↑ D. D. Johnson, Phys. Rev. B38, 12807 (1988).
- ↑ P. Pulay, Chem. Phys. Lett. 73, 393 (1980).