Hybrid functionals: formalism: Difference between revisions
No edit summary |
m (Ftran moved page Hybrid functionals theory to Hybrid functionals: formalism) |
(No difference)
|
Revision as of 12:00, 8 April 2022
Unscreened hybrid functionals
In hybrid exchange-correlation functionals, the exchange component consists of a mixing of GGA (or meta-GGA) and Hartree-Fock exchange:
- [math]\displaystyle{ E_{\mathrm{xc}}^{\mathrm{hybrid}}=\alpha E_{\mathrm{x}}^{\mathrm{HF}} + (1-\alpha)E_{\mathrm{x}}^{\mathrm{GGA}} + E_{\mathrm{c}}^{\mathrm{GGA}}, }[/math]
where [math]\displaystyle{ \alpha }[/math] is the mixing parameter (AEXX) that is typically in the range 0.1-0.5. Two examples of hybrid functionals, PBE0 and B3LYP, are given below.
- [math]\displaystyle{ E_{\mathrm{xc}}^{\mathrm{PBE0}}=\frac{1}{4} E_{\mathrm{x}}^{\mathrm{HF}} + \frac{3}{4} E_{\mathrm{x}}^{\mathrm{PBE}} + E_{\mathrm{c}}^{\mathrm{PBE}}, }[/math]
- where [math]\displaystyle{ E_{x}^{\rm PBE} }[/math] and [math]\displaystyle{ E_{c}^{\rm PBE} }[/math] denote the exchange and correlation parts of the PBE density functional, respectively.
- [math]\displaystyle{ \begin{align} E_{\mathrm{x}}^{\mathrm{B3LYP}} &=0.8 E_{\mathrm{x}}^{\mathrm{LDA}}+ 0.2 E_{\mathrm{x}}^{\mathrm{HF}} + 0.72 \Delta E_{\mathrm{x}}^{\mathrm{B88}}, \\ E_{\mathrm{c}}^{\mathrm{B3LYP}} &=0.19 E_{\mathrm{c}}^{\mathrm{VWN3}}+ 0.81 E_{\mathrm{c}}^{\mathrm{LYP}}, \end{align} }[/math]
- where [math]\displaystyle{ E_{x}^{\rm B3LYP} }[/math] and [math]\displaystyle{ E_{c}^{\rm B3LYP} }[/math] are the B3LYP exchange and correlation energy contributions, respectively. [math]\displaystyle{ E_{x}^{\rm B3LYP} }[/math] consists of 80% of LDA exchange plus 20% of non-local Hartree-Fock exchange, and 72% of the gradient corrections of the Becke88 exchange functional. [math]\displaystyle{ E_{c}^{\rm B3LYP} }[/math] consists of 81% of LYP correlation energy, which contains a local and a semilocal (gradient dependent) part, and 19% of the (local) Vosko-Wilk-Nusair correlation functional III, which is fitted to the correlation energy in the random phase approximation RPA of the homogeneous electron gas.
The non-local Hartree-Fock exchange energy, [math]\displaystyle{ E_{x} }[/math], can be written as
- [math]\displaystyle{ E_{\mathrm{x}}^{\mathrm{HF}}= -\frac{e^2}{2}\sum_{n\mathbf{k},m\mathbf{q}} f_{n\mathbf{k}} f_{m\mathbf{q}} \times \int\int d^3\mathbf{r} d^3\mathbf{r}' \frac{\psi_{n\mathbf{k}}^{*}(\mathbf{r})\psi_{m\mathbf{q}}^{*}(\mathbf{r}') \psi_{n\mathbf{k}}(\mathbf{r}')\psi_{m\mathbf{q}}(\mathbf{r})} {\vert \mathbf{r}-\mathbf{r}' \vert} }[/math]
with [math]\displaystyle{ \{\psi_{n\mathbf{k}}(\mathbf{r})\} }[/math] being the set of one-electron Bloch states of the system, and [math]\displaystyle{ \{f_{n\mathbf{k}}\} }[/math] the corresponding set of (possibly fractional) occupational numbers. The sums over [math]\displaystyle{ {\bf k} }[/math] and [math]\displaystyle{ {\bf q} }[/math] run over all [math]\displaystyle{ {\bf k} }[/math] points chosen to sample the Brillouin zone (BZ), whereas the sums over [math]\displaystyle{ m }[/math] and [math]\displaystyle{ n }[/math] run over all bands at these [math]\displaystyle{ {\bf k} }[/math] points. The corresponding non-local Hartree-Fock potential is given by
- [math]\displaystyle{ V_{\mathrm{x}}\left(\mathbf{r},\mathbf{r}'\right)= -\frac{e^2}{2}\sum_{m\mathbf{q}}f_{m\mathbf{q}} \frac{\psi_{m\mathbf{q}}^{*}(\mathbf{r}')\psi_{m\mathbf{q}}(\mathbf{r})} {\vert \mathbf{r}-\mathbf{r}' \vert} = -\frac{e^2}{2}\sum_{m\mathbf{q}}f_{m\mathbf{q}} e^{-i\mathbf{q}\cdot\mathbf{r}'} \frac{u_{m\mathbf{q}}^{*}(\mathbf{r}')u_{m\mathbf{q}}(\mathbf{r})} {\vert \mathbf{r}-\mathbf{r}' \vert} e^{i\mathbf{q}\cdot\mathbf{r}}, }[/math]
where [math]\displaystyle{ u_{m\mathbf{q}}(\mathbf{r}) }[/math] is the cell periodic part of the Bloch state, [math]\displaystyle{ \psi_{n\mathbf{q}}(\mathbf{r}) }[/math], at [math]\displaystyle{ {\bf k} }[/math] point, [math]\displaystyle{ {\bf q} }[/math], with band index m. Using the decomposition of the Bloch states, [math]\displaystyle{ \psi_{m\mathbf{q}} }[/math], in plane waves,
- [math]\displaystyle{ \psi_{m\mathbf{q}}(\mathbf{r})= \frac{1}{\sqrt{\Omega}} \sum_\mathbf{G}C_{m\mathbf{q}}(\mathbf{G})e^{i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}} }[/math]
the Hartree-Fock exchange potential may be written as
- [math]\displaystyle{ V_{\mathrm{x}}\left(\mathbf{r},\mathbf{r}'\right)= \sum_{\mathbf{k}}\sum_{\mathbf{G}\mathbf{G}'} e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}} V_{\mathbf{k}}\left( \mathbf{G},\mathbf{G}'\right) e^{-i(\mathbf{k}+\mathbf{G}')\cdot\mathbf{r}'} }[/math]
where
- [math]\displaystyle{ V_\mathbf{k}\left( \mathbf{G},\mathbf{G}'\right)= \langle \mathbf{k}+\mathbf{G} | V_{\mathrm{x}} | \mathbf{k}+\mathbf{G}'\rangle = -\frac{4\pi e^2}{\Omega} \sum_{m\mathbf{q}}f_{m\mathbf{q}}\sum_{\mathbf{G}''} \frac{C^*_{m\mathbf{q}}(\mathbf{G}'-\mathbf{G}'') C_{m\mathbf{q}}(\mathbf{G}-\mathbf{G}'')} {|\mathbf{k}-\mathbf{q}+\mathbf{G}''|^2} }[/math]
is the representation of the Hartree-Fock potential in reciprocal space. In VASP, these expressions are implemented within the PAW formalism.[3]
Range-separated hybrid functionals
More popular in solid-state physics, are the screened hybrid functionals, where only the short-range (SR) exchange is mixed, while the long-range (LR) exchange is still fully GGA:
- [math]\displaystyle{ E_{\mathrm{xc}}^{\mathrm{hybrid}}=\alpha E_{\mathrm{x}}^{\mathrm{HF,SR}}(\mu) + (1-\alpha)E_{\mathrm{x}}^{\mathrm{GGA,SR}}(\mu) + E_{\mathrm{x}}^{\mathrm{GGA,LR}}(\mu) + E_{\mathrm{c}}^{\mathrm{GGA}}, }[/math]
where [math]\displaystyle{ \mu }[/math] is the screening parameter (HFSCREEN) that determines the range separation. The most popular range-separated functional, HSE, is given below.
- HSE:
- In the range-separated HSE03[4][5][6] and HSE06[7] hybrid functionals the slowly decaying long-range part of the Hartree-Fock exchange interaction is replaced by the corresponding part of the PBE density functional counterpart. The resulting expression for the exchange-correlation energy is given by:
- [math]\displaystyle{ E_{\mathrm{xc}}^{\mathrm{HSE}}= \frac{1}{4}E_{\mathrm{x}}^{\mathrm{SR,HF}}(\mu) + \frac{3}{4} E_{\mathrm{x}}^{\mathrm{PBE,SR}}(\mu) + E_{\mathrm{x}}^{\mathrm{PBE,LR}}(\mu) + E_{\mathrm{c}}^{\mathrm{PBE}}. }[/math]
The decomposition of the Coulomb kernel is obtained using the following construction:
- [math]\displaystyle{ \frac{1}{r}=S_{\mu}(r)+L_{\mu}(r)=\frac{\mathrm{erfc}(\mu r)}{r}+\frac{\mathrm{erf}(\mu r)}{r}, }[/math]
where [math]\displaystyle{ r =|{\bf r}-{\bf r}'| }[/math], and [math]\displaystyle{ \mu }[/math] (=HFSCREEN) is the parameter that defines the range separation, and is related to a characteristic distance, [math]\displaystyle{ 2/\mu }[/math], at which the short-range interactions become negligible.
Note: It has been shown that the optimum [math]\displaystyle{ \mu }[/math], controlling the range separation is approximately 0.2-0.3 Å-1.[4][5][6][7] To select the HSE06 functional you need to select (HFSCREEN=0.2).
Using the decomposed Coulomb kernel one may straightforwardly rewrite the non-local Hartree-Fock exhange energy:
- [math]\displaystyle{ E^{\rm SR,HF}_{\mathrm{x}}(\mu)= -\frac{e^2}{2}\sum_{n\mathbf{k},m\mathbf{q}} f_{n\mathbf{k}} f_{m\mathbf{q}} \int \int d^3\mathbf{r} d^3\mathbf{r}' \frac{\mathrm{erfc}(\mu|\mathbf{r}-\mathbf{r}'|)}{|\mathbf{r}-\mathbf{r}'|} \times \psi_{n\mathbf{k}}^{*}(\mathbf{r})\psi_{m\mathbf{q}}^{*}(\mathbf{r}') \psi_{n\mathbf{k}}(\mathbf{r}')\psi_{m\mathbf{q}}(\mathbf{r}). }[/math]
The representation of the corresponding short-range Hartree-Fock potential in reciprocal space is given by
- [math]\displaystyle{ \begin{align} V^{\mathrm{SR}}_\mathbf{k}\left( \mathbf{G},\mathbf{G}'\right)&= \langle \mathbf{k}+\mathbf{G} | V^{\rm SR}_x [\mu] | \mathbf{k}+\mathbf{G}'\rangle \\ &=-\frac{4\pi e^2}{\Omega} \sum_{m\mathbf{q}}f_{m\mathbf{q}}\sum_{\mathbf{G}''} \frac{C^*_{m\mathbf{q}}(\mathbf{G}'-\mathbf{G}'') C_{m\mathbf{q}}(\mathbf{G}-\mathbf{G}'')} {|\mathbf{k}-\mathbf{q}+\mathbf{G}''|^2} \times \left( 1-e^{-|\mathbf{k}-\mathbf{q}+\mathbf{G}''|^2 /4\mu^2} \right). \end{align} }[/math]
The only difference to the reciprocal space representation of the complete Hartree-Fock exchange potential is the second factor in the summand above, representing the complementary error function in reciprocal space.
The short-range PBE exchange energy and potential, and their long-range counterparts, are arrived at using the same decomposition, in accordance with Heyd et al.[4] It is easily seen that the long-range term in the decomposed Coulomb kernel becomes zero for [math]\displaystyle{ \mu=0 }[/math], and the short-range contribution then equals the full Coulomb operator, whereas for [math]\displaystyle{ \mu\rightarrow\infty }[/math] it is the other way around. Consequently, the two limiting cases of the HSE functional are a true PBE0 functional for [math]\displaystyle{ \mu=0 }[/math], and a pure PBE calculation for [math]\displaystyle{ \mu\rightarrow\infty }[/math].
Thomas-Fermi screening
In the case of Thomas-Fermi screening, the Coulomb kernel is again decomposed in a short-range and a long-range part.[8][9][10] This decomposition can be conveniently written in reciprocal space:
- [math]\displaystyle{ \frac{4 \pi e^2}{|\mathbf{G}|^2}=S_{\mu}(|\mathbf{G}|)+L_{\mu}(|\mathbf{G}|)=\frac{4 \pi e^2}{|\mathbf{G}|^2 +k_{\mathrm{TF}}^2}+ \left( \frac{4 \pi e^2}{|\mathbf{G}|^2} -\frac{4 \pi e^2}{|\mathbf{G}|^2 +k_{\mathrm{TF}}^2} \right), }[/math]
where [math]\displaystyle{ k_{\rm TF} }[/math] (=HFSCREEN) is the Thomas-Fermi screening length. For typical semiconductors, a Thomas-Fermi screening length of about 1.8 Å-1 yields reasonable band gaps. In principle, however, the Thomas-Fermi screening length depends on the valence-electron density; VASP determines this parameter from the number of valence electrons (read from the POTCAR file) and the volume and writes the corresponding value to the OUTCAR file:
Thomas-Fermi vector in A = 2.00000
Since VASP counts the semi-core states and d-states as valence electrons, although these states do not contribute to the screening, the values reported by VASP are often incorrect.
Another important detail concerns the implementation of the density-functional part in the screened exchange case. Literature suggests that a global enhancement factor [math]\displaystyle{ z }[/math] (see Eq. 3.15)[9] should be used, whereas VASP implements a local-density-dependent enhancement factor [math]\displaystyle{ z=k_{\rm TF}/k }[/math] , where [math]\displaystyle{ k }[/math] is the Fermi wave vector corresponding to the local density (and not the average density as suggested Seidl et al.[9]. The VASP implementation is in the spirit of the local density approximation.
References
- ↑ J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
- ↑ P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
- ↑ J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 122, 234102 (2005).
- ↑ a b c J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
- ↑ a b J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004).
- ↑ a b J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
- ↑ a b A. V. Krukau , O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
- ↑ D. M. Bylander and L. Kleinman, Phys. Rev. B 41, 7868 (1990).
- ↑ a b c A. Seidl, A. Görling, P. Vogl, J.A. Majewski, and M. Levy, Phys. Rev. B 53, 3764 (1996).
- ↑ S. Picozzi, A. Continenza, R. Asahi, W. Mannstadt, A.J. Freeman, W. Wolf, E. Wimmer, and C.B. Geller, Phys. Rev. B 61, 4677 (2000).