Vibrational frequencies of CO on Ni 111 surface

From VASP Wiki
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Task

Calculation of the vibrational frequencies of CO@Ni(111) (on top).

Input

POSCAR

Ni - (111) + CO on-top                  
   3.53000000000000     
     0.7071067800000000    0.0000000000000000    0.0000000000000000
    -0.3535533900000000    0.6123724000000000    0.0000000000000000
     0.0000000000000000    0.0000000000000000    5.1961523999999999
   Ni   C    O 
     5     1     1
Selective dynamics
Direct
  0.0000000000000000  0.0000000000000000  0.0000000000000000   F   F   F
  0.3333333300000021  0.6666666699999979  0.1111111100000031   F   F   F
  0.6666666699999979  0.3333333300000021  0.2222222199999990   F   F   F
 -0.0000000000000000  0.0000000000000000  0.3326227833039623   F   F   F
  0.3333333300000021  0.6666666699999979  0.4445699380869117   F   F   F
  0.3333333300000021  0.6666666699999979  0.5403264650180125   F   F   T
  0.3333333300000021  0.6666666699999979  0.6032949698060487   F   F   T
 
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  0.00000000E+00  0.00000000E+00  0.00000000E+00
  • Frequencies only for the CO molecule and the z-direction (z- and (x,y) are independent).

N.B.: this POSCAR is essentially the result (CONTCAR file) of the relaxation performed in the CO on Ni 111 surface example.

INCAR

 SYSTEM = CO on Ni111 - frequencies
    
general:
  ENMAX  = 400
  ISMEAR =    2  ; SIGMA = 0.2
  ALGO   = Fast
  EDIFF  = 1E-6
  MAXMIX = 60  # reuse the mixer between ionic steps, saves time
    
dynamic:
  NSW = 100
  IBRION = 5
  NFREE  = 2
  • Small termination criterion (EDIFF).
  • Automatic frequency calculation (displacement 0.04 ).
  • Reuse of the mixer between ionic steps (MAXMIX) to save time.

KPOINTS

k-points
0
Monkhorst-Pack
9 9 1
0 0 0

Calculation

  • Finite differences give the following additional output in the OUTCAR fiel for frequency calculations:
Finite differences progress:
 Degree of freedom:   1/  2
 Displacement:        1/  2
 Total:               1/  4
  • After the first calculation for the equilibrium geometry, NFREE displacements (POTIM) are performed for each degree of freedom. From these displacements the dynamical matrix is set up and diagonalized.
  • At the end of the OUTCAR file the following are listed:
    • Forces.
    • The dynamical matrix and finally.
    • The eigenfrequencies.
    • Eigenvectors (first normalized and then mass-weighted).
  • The example output for the eigenvectors and eigenvalues of the dynamical matrix from the OUTCAR file should look like the following:
Eigenvectors and eigenvalues of the dynamical matrix
----------------------------------------------------
  1 f  =   63.914144 THz   401.584411 2PiTHz 2131.946301 cm-1   264.327748 meV
            X         Y         Z           dx          dy          dz
     0.000000  0.000000  0.000000            0           0           0
     0.000000  1.441116  2.038046            0           0           0
     1.248043  0.720558  4.076093            0           0           0
     0.000000  0.000000  6.108743            0           0           0
     0.000000  1.441116  8.153979            0           0           0
     0.000000  1.441116  9.908620            0           0   -0.761748
     0.000000  1.441116 11.063296            0           0    0.623594
   
   
  2 f  =   12.467410 THz    78.335050 2PiTHz  415.868035 cm-1    51.561083 meV
            X         Y         Z           dx          dy          dz
     0.000000  0.000000  0.000000            0           0           0
     0.000000  1.441116  2.038046            0           0           0
     1.248043  0.720558  4.076093            0           0           0
     0.000000  0.000000  6.108743            0           0           0
     0.000000  1.441116  8.153979            0           0           0
     0.000000  1.441116  9.908620            0           0   -0.623594
     0.000000  1.441116 11.063296            0           0   -0.781748

As one can see the first vibrational mode is the so-called CO stretch mode (stretching and contracting the C-O bond), whereas the second mode shows the CO molecule moving w.r.t. to the metallic surface (CO-metal).

  • Try to change the selective dynamics tag such that displacements

in x and y direction are allowed as well for CO (note that the selective dynamics flags always refer to cartesian coordinates), i.e,

 0.3333333300000021  0.6666666699999979  0.5403264650180125   F   F   T
 0.3333333300000021  0.6666666699999979  0.6032949698060487   F   F   T

to

 0.3333333300000021  0.6666666699999979  0.5403264650180125   T   T   T
 0.3333333300000021  0.6666666699999979  0.6032949698060487   T   T   T

Also test whether you need to decrease EDIFF to 1E-8.

Download

COonNi111_freq.tgz