Category:Exchange-correlation functionals: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 12: Line 12:


:<math>
:<math>
U_{\rm H}[\rho] =
V_{\rm en}[\rho] =
\frac{1}{2}\int\int\frac{\rho({\bf r})\rho({\bf r'})}
\frac{1}{2}\int\int\frac{\rho({\bf r})\rho({\bf r'})}
{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}rd^{3}r',
{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}rd^{3}r',

Revision as of 10:36, 18 January 2022

In Kohn-Sham density functional theory (DFT)[1][2], the total energy is given by

[math]\displaystyle{ E_{\rm tot}^{\rm KS}[\rho] = T_{\rm s}[\{\psi_{i}\}] + U_{\rm H}[\rho] + E_{\rm xc} + V_{\rm en}[\rho] + V_{\rm nn} }[/math]

where [math]\displaystyle{ T_{\rm s} }[/math] is the non-interacting kinetic energy of the electrons, [math]\displaystyle{ J }[/math] the Hartree energy, the third term is the energy of the electrons-nuclei attraction interaction, and [math]\displaystyle{ V_{\rm nn} }[/math] is the nuclei-nuclei repulsion energy.

[math]\displaystyle{ T_{\rm s}[\{\psi_{i}\}]=-\frac{1}{2}\sum_{i=1}^{N}\int \psi_{i}^{*}({\bf r})\nabla^{2}\psi_{i}({\bf r})d^{3}r }[/math]
[math]\displaystyle{ V_{\rm en}[\rho] = \frac{1}{2}\int\int\frac{\rho({\bf r})\rho({\bf r'})} {\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}rd^{3}r', }[/math]
[math]\displaystyle{ U_{\rm H}[\rho] = \int v_{\rm ext}({\bf r})\rho({\bf r})d^{3}r }[/math]

Theoretical Background

How to


Subcategories

This category has the following 3 subcategories, out of 3 total.

Pages in category "Exchange-correlation functionals"

The following 120 pages are in this category, out of 120 total.